• Title/Summary/Keyword: 다중 물체 문제

Search Result 40, Processing Time 0.028 seconds

A generating samples method for multiple object tracking using motion histogram (다중 물체 추적에서의 모션 히스토그램을 이용한 샘플 생성 기법)

  • Chun, Ki-Hong;Kang, Hang-Bong
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.744-749
    • /
    • 2007
  • 물체 추적시스템은 비디오 감시 시스템, 화상회의 시스템과 같은 다양한 비전 응용 분야에서 점점 비중이 높아지고 있다. 이 시스템에서 가장 널리 사용되고 있는 방법 중 하나로 Particle-Filter를 들 수 있다. 하지만, 이 Particle-Filter의 단점은 유사한 여러 물체를 추적할 때에 그 물체들이 겹치거나 사라질 경우 정확한 추적을 하기 어렵다는 것이다. 이 단점을 극복하기 위해 많은 연구가 진행되고 있으며, 본 논문에서는 이 문제를 극복하기 위한 새로운 방법을 제안하고자 한다. 다중 물체 추적에서 빈번히 일어나는 문제는 두 가지로 요약할 수 있는데, 동일한 다중 물체가 부분적으로 엇갈리거나 다른 객체에 완전히 겹친 후 떨어질 때 한 물체를 중복하여 추적하는 문제(merge and split problem)와 이 때 분리되어 추적은 됐지만, 물체를 혼동하여 추적하는 문제(Labeling problem)이다. 본 논문에서는 이 러한 문제들을 풀기 위해 이미지 필드에서 보다 정확한 확률분포를 만들고, 이 확률분포의 신뢰성을 높이기 위해서 물체의 특징정보를 표현하는 몇 가지 방법을 제안한다. 전자의 문제는 두 가지 문제로 나누어 생각해 보았다. 첫째, 복잡환 환경에서의 분포를 찾아내는 것과 둘째, 추적 중인 물체를 잃어버릴 경우 새로운 샘플을 생성함으로써 나누어 보았다. 이 문제 중 첫번째는 K-means 클러스터링을 이용하여 유사한 물체가 주변에 퍼져 있을 때, 하나의 후보 위치가 아닌, K개의 후보 위치들을 만들어 내어 보다 정확한 추적이 가능하게 하였으며, 두 번째 문제는 추적 중인 물체가 다른 커다란 물체에 가려질 경우이다. 이 상황에서 샘플을 생성하는 방법은 지금까지 해왔던 간단한 환경에서의 생성 범위와는 다르게 넓게 해야 생성시켜야 한다. 이 때 샘플링의 수를 늘리지 않으면서, 최대한 정확하게 추적하기 위해서 동영상에서 물체의 모션을 이용한 모션 히스토그램을 얻어내고, 그 정보를 이용하여 샘플을 생성하는 위치를 조절함으로써 이 문제를 풀어 보았다. 그리고, 후자의 문제인 이미지 필드상에서 확률분포의 신뢰성을 높이기 위한 특징 정보는 기존에 많이 사용하던 칼라 히스토그램에 공간정보의 의미를 부여하는 칼라 히스토그램을 분할하는 방법과 SIFT에서 사용하는 방향정보와 크기정보를 사용했다. 이것들을 사용하여 보다 정확한 물체추적시스템을 다음과 같이 제안한다.

  • PDF

The study on the object recognition using Fuzzy Classification system based on Support Vector (서포트 벡터 기반 퍼지 분류 시스템을 이용한 물체 인식)

  • Kim, Sung-Jin;Won, Sang-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.167-170
    • /
    • 2003
  • 본 논문에서는 패턴 인식의 전형적인 경우인 보이기 기반 물체 인식(Appearance based object recognition)을 수행하기 위하여, 일반적인 퍼지 분류 모델과, 서포트 벡터 머신을 하이브리드(hybrid) 하게 연결한 서포트 벡터 기반 퍼지 분류 시스템이라는 새로운 방법을 제안하고 이에 대하여 연구한다. 일반적인 분류(classification)문제의 경우 두 클래스로 구분하는데 최적의 성능을 가지고 있는 서포트 벡터 머신이 다중클래스(Multiclass)의 경우 발생 하는 계산량의 증가 문제를 해 결하기 위하여 다중 클래스 분류(Multiclass classification)에 장점을 가진 퍼지 분류 시스템을 도입, 서포트 벡터 머신에 연결함으로써 단점을 보완하는 시스템을 제안한다. 즉 서포트 벡터 머신을 통해 퍼지 시스템의 구조를 러닝(learning)하는데 사용하여 최종 적으로는 퍼지 분류 시스템(Fuzzy Classifier)이 나오도록 하는 것이다. 이 시스템의 성능을 확인하고자 여러 가지 물체들에 대한 이미지를 가지고 있는 COIL(Columbia Object Image Library) 데이터 베이스를 사용하여 보이기 기반 물체 인식(Appearance based Object Recognition)을 수행 하였으며 이를 순수한 서포트 벡터 머신만을 이용하여 물체 인식을 수행한 경우와 정확도 및 인식 시간에 대하여 비교하였다.

  • PDF

Development of a Ubiquitous Vision System for Location awareness of Multiple Targets by Protocol based Approach (Identified Contract Net 프로토콜을 이용한 다중물체의 위치인식을 위한 시각 기반 센서 네트워크 개발)

  • Kim, Chi-Ho;You, Bum-Jae;Kim, Hag-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2870-2872
    • /
    • 2005
  • 본 논문에서는 시각기반 센서 네트워크에 의해 다중물체의 위치를 인식 및 추적하여 목표물들의 위치를 결정할 수 있는 분산형 시각 시스템을 제시한다. 각 시각 센서는 칼라와 동작 정보에 의한 대상물체의 정확한 분할 및 다중물체에 대한 실시간 추적 그리고 간단한 원근법에 의한 포즈 추정을 수행한다. 각 시각 센서를 하나의 에이전트 - 시각 에이전트 -로 정의하고, 전체 시각기반 센서 네트워크를 복수 에이전트 시스템(multiagent system)으로 구성한다. 이로써 대상물체의 핸드오버시 그 대상물체의 신분에 대한 매칭 문제를 Identified Contract Net (ICN) 프로토콜을 제안하여 해결한다. ICN 프로토콜은 시각 에이전트의 개수에 독립적이고 그것을 사용할 경우 시각 에이전트들 간의 캘리브레이션도 필요로 하지 않기 때문에 시각기반 센서 네트워크의 속도, 확장성 및 모듈성을 높여준다. 실험을 통해 구성한 시각기반 센서 네트워크에서 ICN 프로토콜이 적용됨을 성공적으로 검증하였다.

  • PDF

Tracking and Recognition of vehicle and pedestrian for intelligent multi-visual surveillance systems (지능형 다중 화상감시시스템을 위한 움직이는 물체 추적 및 보행자/차량 인식 방법)

  • Lee, Saac;Cho, Jae-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.435-442
    • /
    • 2015
  • In this paper, we propose a tracking and recognition of pedestrian/vehicle for intelligent multi-visual surveillance system. The intelligent multi-visual surveillance system consists of several fixed cameras and one calibrated PTZ camera, which automatically tracks and recognizes the detected moving objects. The fixed wide-angle cameras are used to monitor large open areas, but the moving objects on the images are too small to view in detail. But, the PTZ camera is capable of increasing the monitoring area and enhancing the image quality by tracking and zooming in on a target. The proposed system is able to determine whether the detected moving objects are pedestrian/vehicle or not using the SVM. In order to reduce the tracking error, an improved camera calibration algorithm between the fixed cameras and the PTZ camera is proposed. Various experimental results show the effectiveness of the proposed system.

A Study on a Feature-based Multiple Objects Tracking System (특징 기반 다중 물체 추적 시스템에 관한 연구)

  • Lee, Sang-Wook;Seol, Sung-Wook;Nam, Ki-Gon;Kwon, Tae-Ha
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.11
    • /
    • pp.95-101
    • /
    • 1999
  • In this paper, we propose an adaptive method of tracking multiple moving objects using contour and features in surrounding conditions. We use an adaptive background model for robust processing in surrounding conditions. Object segmentation model detects pixels thresholded from local difference image between background and current image and extracts connected regions. Data association problem is solved by using feature extraction and object recognition model in searching window. We use Kalman filters for real-time tracking. The results of simulation show that the proposed method is good for tracking multiple moving objects in highway image sequences.

  • PDF

Multiple Vehicle Tracking Algorithm Using Kalman Filters (칼만 필터를 이용한 다중 차량 추적 알고리즘)

  • 이철헌;김형태;설성욱;남기곤;이장명
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.3
    • /
    • pp.89-96
    • /
    • 1999
  • 본 논문에서는 빠른 수행 속도를 가지고 여러 대의 차량을 동시에 추적할 수 있는 다중 차량 추적 알고리즘을 제안한다. 이러한 작업은 연속 영상으로부터 움직이는 물체의 동작 정보를 구하는 동작 분할(motion segmentation)단계와 칼만 필터(Kalman filter)를 이용해서 물체의 위치를 예측하는 동작 예측(motion estimation)단계로 나누어진다. 제안된 알고리즘은 아핀 동작 모델(Affine motion model)을 적용하여 동작 정보를 근사화함으로써 두 개의 선형 칼만 필터를 사용하고, 칼만 필터에서 예측된 위치 정보를 동작 분할 과정에 사용하여 빠른 추적이 이루어지도록 하였다. 또한, 다중 물체 추적 시 중요한 데이터 연결 문제(data association problem)를 해결하기 위해서 패턴 인식 방법을 도입하였다. 제안된 알고리즘을 고속 도로 영상에 대해 적용했을 때, 빠르고 정확한 다중 차량 추적이 이루어짐을 실험 결과를 통해 보였다.

  • PDF

A Study on Multiple Target Tracking Using Self-Organizing Neural Network (자기조직화 신경망을 이용한 다중 표적 추적에 관한 연구)

  • 서창진;김광백
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.6
    • /
    • pp.1304-1311
    • /
    • 2003
  • Target tracking in a real world situation is difficult problem because of continuous variations in images, huge amounts of data, and high processing speed demands. The problem becomes even harder in the case of sea background. This paper presents an initial study of neural network based method for target detection and tracking in cluttering environment. The approach uses a combination of differential motion analysis, Kohonen self-organizing network and region growing method. The network is capable of detecting the mass-centers of moving objects within one frame. The history of neurons positions in the sequential frames approximates the traces of the targets. The experiments done with the network in simulated environment showed promising results.

Time-Domain Analysis on Motion Response of Adjacent Multiple-Bodies in Waves (파랑 중 근접한 다중 물체의 운동응답에 대한 시간영역 해석)

  • Kim, Kyong-Hwan;Kim, Yong-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.1
    • /
    • pp.63-72
    • /
    • 2008
  • This study considers the motion response of multiple adjacent floating bodies in waves. As a method of solution, a three-dimensional Rankine panel method is adopted in time domain. For the validation of the developed numerical method, the motions of two adjacent Series 60 hulls and ship-barge model are estimated. The computational results are compared with other numerical and experimental analyses, showing favorable agreement.

Effective Classification Method of Hierarchical CNN for Multi-Class Outlier Detection (다중 클래스 이상치 탐지를 위한 계층 CNN의 효과적인 클래스 분할 방법)

  • Kim, Jee-Hyun;Lee, Seyoung;Kim, Yerim;Ahn, Seo-Yeong;Park, Saerom
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.81-84
    • /
    • 2022
  • 제조 산업에서의 이상치 검출은 생산품의 품질과 운영비용을 절감하기 위한 중요한 요소로 최근 딥러닝을 사용하여 자동화되고 있다. 이상치 검출을 위한 딥러닝 기법에는 CNN이 있으며, CNN을 계층적으로 구성할 경우 단일 CNN 모델에 비해 상대적으로 성능의 향상을 보일 수 있다는 것이 많은 선행 연구에서 나타났다. 이에 MVTec-AD 데이터셋을 이용하여 계층 CNN이 다중 클래스 이상치 판별 문제에 대해 효과적인지를 탐구하고자 하였다. 실험 결과 단일 CNN의 정확도는 0.7715, 계층 CNN의 정확도는 0.7838로 다중 클래스 이상치 판별 문제에 있어 계층 CNN 방식 접근이 다중 클래스 이상치 탐지 문제에서 알고리즘의 성능을 향상할 수 있음을 확인할 수 있었다. 계층 CNN은 모델과 파라미터의 개수와 리소스의 사용이 단일 CNN에 비하여 기하급수적으로 증가한다는 단점이 존재한다. 이에 계층 CNN의 장점을 유지하며 사용 리소스를 절약하고자 하였고 K-means, GMM, 계층적 클러스터링 알고리즘을 통해 제작한 새로운 클래스를 이용해 계층 CNN을 구성하여 각각 정확도 0.7930, 0.7891, 0.7936의 결과를 얻을 수 있었다. 이를 통해 Clustering 알고리즘을 사용하여 적절히 물체를 분류할 경우 물체에 따른 개별 상태 판단 모델을 제작하는 것과 비슷하거나 더 좋은 성능을 내며 리소스 사용을 줄일 수 있음을 확인할 수 있었다.

  • PDF

Multiple Vehicles Tracking via sequential posterior estimation (순차적인 사후 추정에 의한 다중 차량 추적)

  • Lee, Won-Ju;Yoon, Chang-Young;Lee, Hee-Jin;Kim, Eun-Tai;Park, Mignon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.1
    • /
    • pp.40-49
    • /
    • 2007
  • In a visual driver-assistance system, separating moving objects from fixed objects are an important problem to maintain multiple hypothesis for the state. Color and edge-based tracker can often be 'distracted' causing them to track the wrong object. Many researchers have dealt with this problem by using multiple features, as it is unlikely that all will be distracted at the same time. In this paper, we improve the accuracy and robustness of real-time tracking by combining a color histogram feature with a brightness of Optical Flow-based feature under a Sequential Monte Carlo framework. And it is also excepted from Tracking as time goes on, reducing density by Adaptive Particles Number in case of the fixed object. This new framework makes two main contributions. The one is about the prediction framework which separating moving objects from fixed objects and the other is about measurement framework to get a information from the visual data under a partial occlusion.