• 제목/요약/키워드: 다중 다층 퍼셉트론

검색결과 22건 처리시간 0.037초

다층 퍼셉트론과 마코프 랜덤 필드 모델을 이용한 베이지안 결 분할 (Bayesian Texture Segmentation Using Multi-layer Perceptron and Markov Random Field Model)

  • 김태형;엄일규;김유신
    • 대한전자공학회논문지SP
    • /
    • 제44권1호
    • /
    • pp.40-48
    • /
    • 2007
  • 이 논문은 다중 스케일 베이지안 관점에서 다층 퍼셉트론과 마코프 랜덤 필드를 사용한 새로운 결 분할 방법을 제안한다. 다층 퍼셉트론의 출력은 사후 확률을 모델링하므로 본 논문에서는 다중 스케일 웨이블릿 계수들을 다층 퍼셉트론의 입력으로 사용한다. 다층 퍼셉트론으로부터 구한 사후 확률과 MAP (maximum a posterior) 분류를 이용하여 각 스케일에서 결 분류를 수행한다. 또한 가장 섬세한 스케일에서 더 개선된 분할 결과를 얻기 위하여 모든 스케일에서 MAP 분류 결과들을 거친 스케일에서 섬세한 스케일까지 차례로 융합한다. 이런 과정은 한 스케일에서의 분류 정보와 그 인접한 보다 거친 스케일에서 얻어지는 문맥과 관련한 연역적 정보를 이용하여 MAP 분류를 행함으로써 이루어진다. 이 융합 과정에서, MRF (Markov random fields) 사전 모델이 평탄화 제한자로서 동작하고, 깁스 샘플러 (Gibbs sampler)는 MAP 분류기로서 동작한다. 제안한 분할 방법은 HMT (Hidden Markov Trees) 모델과 HMTseg 알고리즘을 이용한 결 분할 방법보다 더 좋은 성능을 보인다.

다중 센서 데이터와 다층 퍼셉트론을 활용한 젖소의 유방염 진단 예측 (Prediction of dairy cow mastitis with multi-sensor data using Multi-Layer Perceptron(MLP))

  • 송혜원;박기철;박재화
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.788-791
    • /
    • 2020
  • 낙농업에서 경제적 손실을 불러일으키고 관찰 시간과 비용이 필요한 젖소의 유방염 관리는 중요하다. 그러나 지금까지의 연구는 유방염 진단에 초점을 맞추고 있고, 예측하려는 시도는 전무하다. 유방염에 걸린 개체는 며칠 동안 우유를 생산할 수 없기 때문에 낙농가에 막대한 피해를 준다. 따라서 젖소가 유방염에 걸려 증상이 나타나기 전에 미리 파악해 조처를 할 수 있도록 하는 것이 중요하다. 이에 본 연구는 유방염 예측을 위해 생체 데이터를 포함한 다중 센싱 데이터를 사용해 유방염 예측 모델을 개발하였다. 모델에 사용된 데이터는 충청남도의 농가에 설치된 로봇 착유기로 부터 수집하였으며, 일정 기간 동안의 다중 센싱 데이터를 바탕으로 다음 날의 유방염 여부를 예측한다. 많은 양의 비선형 데이터를 효과적으로 처리하기 위해 다층 퍼셉트론을 사용해 모델을 학습하였다. 그 결과, 81.6%의 예측 정확도를 보였으며 교차 검증을 통해 정확도뿐만 아니라 재현율까지 우수함을 확인할 수 있었다.

다층퍼셉트론의 강하 학습을 위한 최적 학습률 (Optimal Learning Rates in Gradient Descent Training of Multilayer Perceptrons)

  • 오상훈
    • 한국콘텐츠학회논문지
    • /
    • 제4권3호
    • /
    • pp.99-105
    • /
    • 2004
  • 이 논문은 다층퍼셉트론의 학습을 빠르게 하기 위한 최적 학습률을 제안한다. 이 학습률은 한 뉴런에 연결된 가중치들에 대한 학습률과, 중간층에 가상의 목표값을 설정하기 위한 학습률로 나타난다. 그 결과, 중간층 가중치의 최적 학습률은 가상의 중간층 목표값 할당 성분과 중간층 오차함수를 최소화 시키고자하는 성분의 곱으로 나타난다. 제안한 방법은 고립단어인식과 필기체 숫자 인식 문제의 시뮬레이션으로 효용성을 확인하였다.

  • PDF

ESS 용량 산정을 위한 다층 퍼셉트론을 이용한 풍력 발전량 예측 (Prediction of Wind Power Generation for Calculation of ESS Capacity using Multi-Layer Perceptron)

  • 최정곤;최효상
    • 한국전자통신학회논문지
    • /
    • 제16권2호
    • /
    • pp.319-328
    • /
    • 2021
  • 본 논문에서는 풍력 발전 수익 극대화 및 비용 최소화를 위해 설치하는 ESS에 대하여 정확한 용량 산정을 하기 위한 목적으로 풍력 단지용 전력량 예측을 다층 퍼셉트론을 이용하여 수행한다. 풍력 발전량을 예측하기 위해 풍속, 풍향, 공기밀도를 변수로 하고 그 변수를 병합하고 정규화한다. 모델을 훈련시키기 위해 병합된 변수를 70% 대 30% 비율로 훈련 및 테스트 데이터로 나눈다. 그런 다음 학습 데이터를 사용하여 모델을 학습시키고 테스트 데이터를 사용하여 모델의 예측 성능도 평가한다. 마지막으로 풍력량 예측 결과를 제시한다.

다층 퍼셉트론 기반 고해상도 위성영상의 상대 방사보정 (Relative Radiometric Normalization for High-Spatial Resolution Satellite Imagery Based on Multilayer Perceptron)

  • 서대교;어양담
    • 한국측량학회지
    • /
    • 제36권6호
    • /
    • pp.515-523
    • /
    • 2018
  • 다중시기의 위성영상에 대해 일관성 있는 변화탐지 결과를 획득하기 위해서는 전처리 과정이 필수적으로 이루어져야 한다. 특히, 분광값과 관련된 전처리 과정은 방사보정으로 수행될 수 있으며, 일반적으로 상대 방사보정이 활용되고 있다. 하지만, 대부분의 상대 방사보정은 두 영상간의 관계를 선형으로 가정하며, 생태학적 차이와 같은 비선형적인 분광특성은 고려되지 않는다. 따라서, 본 연구에서는 방사 및 생태학적 특성에 대한 복합적인 보정을 수행할 수 있는 비선형적인 관계를 가정한 상대 방사보정을 제안하였다. 제안된 방법은 입력영상 및 참조영상을 선정하고, no-change method를 통해 radiometric control set samples를 추출하였다. 또한, 충분한 정보를 고려하기 위하여 화소값뿐만 아니라 분광지수들이 추출되었고, 비선형적인 관계의 모델링은 다층 퍼셉트론을 통해 수행되었다. 최종적으로 기존의 상대 방사보정기법과 비교 분석을 수행하였고, 시각적 및 정략적으로 평가한 결과 제안된 방법이 기존의 상대 방사보정보다 우수한 것을 확인하였다.

다중 다층 퍼셉트론을 이용한 저해상도 홍채 영상의 고해상도 복원 연구 (A Study on the Restoration of a Low-Resoltuion Iris Image into a High-Resolution One Based on Multiple Multi-Layered Perceptrons)

  • 신광용;강병준;박강령;신재호
    • 한국멀티미디어학회논문지
    • /
    • 제13권3호
    • /
    • pp.438-456
    • /
    • 2010
  • 홍채 인식은 고유한 홍채 패턴을 이용하여 신원을 확인하는 생체 인식 기술이다. 일반적으로 홍채인식에서 는 홍채 직경이 200 화소(pixel) 이상 되는 고해상도 홍채 영상을 사용하며, 이런 경우 인식률 감소 없이 정확한 홍채 인식 결과를 얻는다고 알려져 있다. 이를 위해 기존의 홍채 인식 시스템들은 줌렌즈 카메라를 사용하지만, 이러한 카메라는 홍채 인식기의 가격과 크기를 증가시키는 요인이 된다. 이러한 문제를 해결하기 위하여 본 연구에서는 줌렌즈 카메라의 사용 없이 저해상도로 취득된 홍채 영상에서의 인식 정확도를 향상할 수 있는 방법을 제안한다. 본 연구에서는 기존의 방법과 비교하여 다음과 같은 두 가지 장점을 갖는다. 첫째, 기존의 연구에서는 홍채 직경이 200 화소 이하인 저해상도 영상에서의 홍채 인식 성능 감소에 대한 정량적 분석이 진행된 바 없다. 본 연구에서는 홍채 영상의 초점 정도, 눈꺼풀 및 속눈썹 가림 정도의 영향을 배제하고, 홍채 영상의 크기 변화에 따른 인식율의 저하정도를 정량적으로 파악하였다. 둘째, 한 장의 저해상도 홍채 영상을 고해상도 영상으로 복원하기 위해 홍채 영역의 에지 방향에 따라 개별적으로 다르게 학습된 다중 다층 퍼셉트론을 적용함으로써, 복원된 영상에서의 인식 정확도를 향상시켰다. 원 영상대비 6%만큼의 크기로 축소한 저해상도 홍채 영상을 고해상도 영상으로 복원한 결과, 제안하는 방법에 의한 홍채 인식의 EER이 기존의 이중선형보간법에 의한 EER보다 0.133% (1.485% - 1.352%) 만큼 감소됨을 알 수 있었다.

다중 신경회로망을 이용한 특징정보 융합과 적외선영상에서의 표적식별에의 응용 (Feature information fusion using multiple neural networks and target identification application of FLIR image)

  • 선선구;박현욱
    • 대한전자공학회논문지SP
    • /
    • 제40권4호
    • /
    • pp.266-274
    • /
    • 2003
  • 전방 관측 적외선 영상에서 가려짐이 없는 표적과 부분적으로 가려진 표적을 식별하기 위해 국부적 표적 경계선에 대한 거리함수의 푸리에기술자와 다중의 다층 퍼셉트론을 사용한 특징정보 융합 방법을 제안한다. 표적을 배경으로부터 분리한 후에 표적 경계선의 중심을 기준으로 푸리에 기술자를 구해 전역적 특징으로 사용한다. 국부적인 형상 특징을 찾기 위해 표적 경계선을 분할하여 4개의 국부적 경계선을 만들고, 각 국부적 경계선에서 두 개의 극단점이 이루는 직선과 경계선 픽셀로부터 거리함수를 정의한다. 거리함수에 대한 푸리에 기술자를 국부적 형상특징으로 사용한다. 1개의 광역적 특징 백터와 4개의 국부적 특징 백터를 정의하고 다중의 다층 퍼셉트론을 사용하여 특징정보들을 융합함으로써 최종 표적식별 결과를 얻는다. 실험을 통해 기존의 특징벡터들에 의한 표적식별 방법과 비교하여 제안한 방법의 우수성을 입증한다.

다중 에이전트 강화학습을 위한 SOM 기반의 일반화 (SOM_Based Generalization for Multiagent Reinforcement Learning)

  • 임문택;김인철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2002년도 춘계학술발표논문집 (상)
    • /
    • pp.565-568
    • /
    • 2002
  • 본 논문에서는 에이전트간의 통신이 불가능한 다중 에이전트 환경에서 각 에이전트들이 독립적이면서 대표적인 강화학습법인 Q-학습을 전개함으로써 서로 효과적으로 협조할 수 있는 행동전략을 학습하려고 한다. 하지만 단일 에이전트 경우에 비해 보다 큰 상태-행동공간을 갖는 다중 에이전트환경에서는 강화학습을 통해 효과적으로 최적의 행동 전략에 도달하기 어렵다는 문제점이 있다. 이 문제에 대한 기존의 접근방법은 크게 모듈화 방법과 일반화 방법이 제안되었으나 모두 나름의 제한을 가지고 있다. 본 논문에서는 대표적인 다중 에이전트 학습 문제의 예로서 the Prey and Hunters Problem를 소개하고 이 문제영역을 통해 이와 같은 강화학습의 문제점을 살펴보고, 해결책으로 신경망 SOM 을 이용한 일반화 방법을 제안한다. 이 방법은 다층 퍼셉트론 신경망과 역전파 알고리즘을 이용한 기존의 일반화 방법과는 달리 군집화 기능을 제공하는 신경망 SOM 을 이용함으로써 명확한 다수의 훈련 예가 없어도 효과적으로 채 경험하지 못한 상태-행동들에 대한 Q 값을 예측하고 이용할 수 있다는 장점이 있다.

  • PDF

유량과 수질을 연계한 실시간 인공지능 경보시스템 개발 (II) 경보시스템 구축 (A Development of Real Time Artificial Intelligence Warning System Linked Discharge and Water Quality (II) Construction of Warning System)

  • 연인성;안상진
    • 한국수자원학회논문집
    • /
    • 제38권7호
    • /
    • pp.575-584
    • /
    • 2005
  • 수질오염 사고를 판단하기위한 경보모형은 다중퍼셉트론과 다층신경망, 뉴로-퍼지 모형들로 구성되었으며, 개발된 기준축에 따른 안정, 주의, 경고 상태를 학습하였다. 수질예측 모형에 유출예측 모형을 연계하고 경보모형을 결합하여 인공지능 시스템을 구축하였으며, 구축된 시스템을 GUI로 구현하였다. GUI 화면은 초기화면, 자료 전처리 과정, 유량예측 과정, 수질예측 과정, 경보시스템의 순으로 진행된다. 수질오염 사고에 대한 시나리오를 작성하여 시스템의 적용성을 검토하였으며, 인공지능 경보시스템은 이상수질에 대하여 위험 및 안정 상태를 적합하게 구별하는 것으로 나타났다.

심층 CNN을 활용한 영상 분위기 분류 및 이를 활용한 동영상 자동 생성 (Image Mood Classification Using Deep CNN and Its Application to Automatic Video Generation)

  • 조동희;남용욱;이현창;김용혁
    • 한국융합학회논문지
    • /
    • 제10권9호
    • /
    • pp.23-29
    • /
    • 2019
  • 본 연구에서는 영상의 분위기를 심층 합성곱 신경망을 통해 8 가지로 분류하고, 이에 맞는 배경 음악을 적용하여 동영상을 자동적으로 생성하였다. 수집된 이미지 데이터를 바탕으로 다층퍼셉트론을 사용하여 분류 모델을 학습한다. 이를 활용하여 다중 클래스 분류를 통해 동영상 생성에 사용할 이미지의 분위기를 예측하며, 미리 분류된 음악을 매칭시켜 동영상을 생성한다. 10겹 교차 검증의 결과, 72.4%의 정확도를 얻을 수 있었고, 실제 영상에 대한 실험에서 64%의 오차 행렬 정확도를 얻을 수 있었다. 오답의 경우, 주변의 비슷한 분위기로 분류하여 동영상에서 나오는 음악과 크게 위화감이 없음을 확인하였다.