Journal of the Institute of Electronics Engineers of Korea SP
/
v.44
no.1
/
pp.40-48
/
2007
This paper presents a novel texture segmentation method using multilayer perceptron (MLP) networks and Markov random fields in multiscale Bayesian framework. Multiscale wavelet coefficients are used as input for the neural networks. The output of the neural network is modeled as a posterior probability. Texture classification at each scale is performed by the posterior probabilities from MLP networks and MAP (maximum a posterior) classification. Then, in order to obtain the more improved segmentation result at the finest scale, our proposed method fuses the multiscale MAP classifications sequentially from coarse to fine scales. This process is done by computing the MAP classification given the classification at one scale and a priori knowledge regarding contextual information which is extracted from the adjacent coarser scale classification. In this fusion process, the MRF (Markov random field) prior distribution and Gibbs sampler are used, where the MRF model serves as the smoothness constraint and the Gibbs sampler acts as the MAP classifier. The proposed segmentation method shows better performance than texture segmentation using the HMT (Hidden Markov trees) model and HMTseg.
낙농업에서 경제적 손실을 불러일으키고 관찰 시간과 비용이 필요한 젖소의 유방염 관리는 중요하다. 그러나 지금까지의 연구는 유방염 진단에 초점을 맞추고 있고, 예측하려는 시도는 전무하다. 유방염에 걸린 개체는 며칠 동안 우유를 생산할 수 없기 때문에 낙농가에 막대한 피해를 준다. 따라서 젖소가 유방염에 걸려 증상이 나타나기 전에 미리 파악해 조처를 할 수 있도록 하는 것이 중요하다. 이에 본 연구는 유방염 예측을 위해 생체 데이터를 포함한 다중 센싱 데이터를 사용해 유방염 예측 모델을 개발하였다. 모델에 사용된 데이터는 충청남도의 농가에 설치된 로봇 착유기로 부터 수집하였으며, 일정 기간 동안의 다중 센싱 데이터를 바탕으로 다음 날의 유방염 여부를 예측한다. 많은 양의 비선형 데이터를 효과적으로 처리하기 위해 다층 퍼셉트론을 사용해 모델을 학습하였다. 그 결과, 81.6%의 예측 정확도를 보였으며 교차 검증을 통해 정확도뿐만 아니라 재현율까지 우수함을 확인할 수 있었다.
This paper proposes optimal learning rates in the gradient descent training of multilayer perceptrons, which are a separate learning rate for weights associated with each neuron and a separate one for assigning virtual hidden targets associated with each training pattern Effectiveness of the proposed error function was demonstrated for a handwritten digit recognition and an isolated-word recognition tasks and very fast learning convergence was obtained.
The Journal of the Korea institute of electronic communication sciences
/
v.16
no.2
/
pp.319-328
/
2021
In this paper, we perform prediction of amount of electric power plant for complex of wind plant using multi-layer perceptron in order to calculate exact calculation of capacity of ESS to maximize profit through generation and to minimize generation cost of wind generation. We acquire wind speed, direction of wind and air density as variables to predict the amount of generation of wind power. Then, we merge and normalize there variables. To train model, we divide merged variables into data as train and test data with ratio of 70% versus 30%. Then we train model by using training data, and we alsouate the prediction performance of model by using test data. Finally, we present the result of prediction in amount of wind power.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.36
no.6
/
pp.515-523
/
2018
In order to obtain consistent change detection result for multi-temporal satellite images, preprocessing must be performed. In particular, the preprocessing related to the spectral values can be performed by the radiometric normalization, and relative radiometric normalization is generally utilized. However, most relative radiometric normalization methods assume a linear relationship between the two images, and nonlinear spectral characteristics such as phenological differences are not considered. Therefore, this study proposes a relative radiometric normalization which assumes nonlinear relationships that can perform compositive normalization of radiometric and phenological characteristics. The proposed method selects the subject and reference images, and then extracts the radiometric control set samples through the no-change method. In addition, spectral indexes as well as pixel values are extracted in order to consider sufficient information, and modeling of nonlinear relationships is performed through multilayer perceptron. Finally, the proposed method is compared with the conventional relative radiometric normalization methods, which shows that the proposed method is visually and quantitatively superior.
Iris recognition uses a unique iris pattern of user to identify person. In order to enhance the performance of iris recognition, it is reported that the diameter of iris region should be greater than 200 pixels in the captured iris image. So, the previous iris system used zoom lens camera, which can increase the size and cost of system. To overcome these problems, we propose a new method of enhancing the accuracy of iris recognition on low-resolution iris images which are captured without a zoom lens. This research is novel in the following two ways compared to previous works. First, this research is the first one to analyze the performance degradation of iris recognition according to the decrease of the image resolution by excluding other factors such as image blurring and the occlusion of eyelid and eyelash. Second, in order to restore a high-resolution iris image from single low-resolution one, we propose a new method based on multiple multi-layered perceptrons (MLPs) which are trained according to the edge direction of iris patterns. From that, the accuracy of iris recognition with the restored images was much enhanced. Experimental results showed that when the iris images down-sampled by 6% compared to the original image were restored into the high resolution ones by using the proposed method, the EER of iris recognition was reduced as much as 0.133% (1.485% - 1.352%) in comparison with that by using bi-linear interpolation
Journal of the Institute of Electronics Engineers of Korea SP
/
v.40
no.4
/
pp.266-274
/
2003
Distance Fourier descriptors of local target boundary and feature information fusion using multiple MLPs (Multilayer perceptrons) are proposed. They are used to identify nonoccluded and partially occluded targets in natural FLIR (forward-looking infrared) images. After segmenting a target, radial Fourier descriptors as global shape features are defined from the target boundary. A target boundary is partitioned into four local boundaries to extract local shape features. In a local boundary, a distance function is defined from boundary points and a line between two extreme points. Distance Fourier descriptors as local shape features are defined by using distance function. One global feature vector and four local feature vectors are used as input data for multiple MLPs to determine final identification result of the target. In the experiments, we show that the proposed method is superior to the traditional feature sets with respect to the identification performance.
본 논문에서는 에이전트간의 통신이 불가능한 다중 에이전트 환경에서 각 에이전트들이 독립적이면서 대표적인 강화학습법인 Q-학습을 전개함으로써 서로 효과적으로 협조할 수 있는 행동전략을 학습하려고 한다. 하지만 단일 에이전트 경우에 비해 보다 큰 상태-행동공간을 갖는 다중 에이전트환경에서는 강화학습을 통해 효과적으로 최적의 행동 전략에 도달하기 어렵다는 문제점이 있다. 이 문제에 대한 기존의 접근방법은 크게 모듈화 방법과 일반화 방법이 제안되었으나 모두 나름의 제한을 가지고 있다. 본 논문에서는 대표적인 다중 에이전트 학습 문제의 예로서 the Prey and Hunters Problem를 소개하고 이 문제영역을 통해 이와 같은 강화학습의 문제점을 살펴보고, 해결책으로 신경망 SOM 을 이용한 일반화 방법을 제안한다. 이 방법은 다층 퍼셉트론 신경망과 역전파 알고리즘을 이용한 기존의 일반화 방법과는 달리 군집화 기능을 제공하는 신경망 SOM 을 이용함으로써 명확한 다수의 훈련 예가 없어도 효과적으로 채 경험하지 못한 상태-행동들에 대한 Q 값을 예측하고 이용할 수 있다는 장점이 있다.
The judgement model to warn of possible pollution accident is constructed by multi-perceptron, multi layer neural network, neuro-fuzzy and it is trained stability, notice, and warming situation due to developed standard axis. The water quality forecasting model is linked to the runoff forecasting model, and joined with the judgement model to warn of possible pollution accident, which completes the artificial intelligence warning system. And GUI (Graphic User Interface) has been designed for that system. GUI screens, in order of process, are main page, data edit, discharge forecasting, water quality forecasting, warming system. The application capability of the system was estimated by the pollution accident scenario. Estimation results verify that the artificial intelligence warning system can be a reasonable judgement of the noized water pollution data.
In this paper, the mood of images was classified into eight categories through a deep convolutional neural network and video was automatically generated using proper background music. Based on the collected image data, the classification model is learned using a multilayer perceptron (MLP). Using the MLP, a video is generated by using multi-class classification to predict image mood to be used for video generation, and by matching pre-classified music. As a result of 10-fold cross-validation and result of experiments on actual images, each 72.4% of accuracy and 64% of confusion matrix accuracy was achieved. In the case of misclassification, by classifying video into a similar mood, it was confirmed that the music from the video had no great mismatch with images.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.