Proceedings of the Korea Institute of Convergence Signal Processing
/
2000.08a
/
pp.325-328
/
2000
텍스쳐 분석은 장면 분할, 물체 인식, 모양과 깊이 인식 등의 많은 영상 처리 분야에서 중요한 기술 중의 하나이다. 그러나 실영상에 포함된 다양한 텍스쳐 성분에 대해서 보편적으로 적용 가능한 효율적인 방법들에 대한 연구는 미흡한 실정이다. 본 논문에서는 텍스쳐 인식을 위해서 비교사 학습 방법에 기반 한 효율적인 텍스쳐 분석 기법을 제안한다. 제안된 방법은 텍스쳐 영상이 지닌 방향특징 정보로서 각(angle)과 강도(power)를 추출하여 자기 조직화 신경회로망에 의해서 블록기반으로 군집화(clustering)된다. 비교사적 군집 결과는 통합(merging)과 불림(dilation) 과정을 통해서 영상에 내재된 텍스쳐 성분의 분할을 수행한다. 제안된 시스템의 성능 평가를 위해서는 다양한 형태의 다중 텍스쳐 영상을 생성하여 적용한 후 그 유효성을 보인다.
Texture analysis is an important technique in many image understanding areas, such as perception of surface, object, shape and depth. But the previous works are intend to the issue of only texture segment, that is not capable of acquiring recognition information. No unsupervised method is basased on the recognition of texture in image. we propose a novel approach for efficient texture image analysis that uses unsupervised learning schemes for the texture recognition. The self-organization neural network for multiple texture image identification is based on block-based clustering and merging. The texture features used are the angle and magnitude in orientation-field that might be different from the sample textures. In order to show the performance of the proposed system, After we have attempted to build a various texture images. The final segmentation is achieved by using efficient edge detection algorithm applying to block-based dilation. The experimental results show that the performance of the system Is very successful.
Established in the lower reaches of the Nakdong river in Busan, the Noksan national industrial complex is one of the deepest soft ground areas in Korea. In case of the costal landfill having deep soft ground, there is a significant residual settlement over a long period of time. In this study, there was observed ground subsidence occurred in the Noksan national industrial complex from September 2002 to April 2007 by applying DInSAR and SBAS time series method using RADARSAT-1 and Envisat SAR datasets. As a result, it was calculated that ground subsidence developed at the velocity of about maximum 10 cm/yr and mean 6 cm/yr at the eastern center, west, western center and southern area contiguous on the coastline of the study area during the period from September 2002 to April 2007. In addition, the RADARSAT-1 average displacement map has been compared with the total displacement map observed by accurate magnetic probe extensometer during the period from 2001 to 2002. Since the time series displacement has shown a linear trend mostly, we consider that continuous monitoring should be needed until the ground subsidence of the study area has been stabilized.
Generating of digital hologram of video contents with computer graphics(CG) requires natural fusion of 3D information between real and virtual. In this paper, we propose the system which can fuse real-virtual 3D information naturally and fast generate the digital hologram of fused results using multiple-GPUs based computer-generated-hologram(CGH) computing part. The system calculates camera projection matrix of RGB-Depth camera, and estimates the 3D information of virtual object. The 3D information of virtual object from projection matrix and real space are transmitted to Z buffer, which can fuse the 3D information, naturally. The fused result in Z buffer is transmitted to multiple-GPUs based CGH computing part. In this part, the digital hologram of fused result can be calculated fast. In experiment, the 3D information of virtual object from proposed system has the mean relative error(MRE) about 0.5138% in relation to real 3D information. In other words, it has the about 99% high-accuracy. In addition, we verify that proposed system can fast generate the digital hologram of fused result by using multiple GPUs based CGH calculation.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2021.06a
/
pp.95-96
/
2021
본 논문에서는 단안비디오 입력으로부터 각 SAI(sub-aperture image)간의 넓은 기준선을 갖는 라이트필드 합성기법을 제안한다. 기존의 라이트필드 영상은 취득의 어려움에 의해 규모가 작고 특정 물체위주로 구성되어 있어 컴퓨터 비전 및 그래픽스 분야의 최신 딥러닝 기법들을 라이트필드 분야에 적용하기 어렵다는 문제를 갖고 있다. 이러한 문제점들을 해결하기 위해 사실적 렌더링 기반의 가상환경상에서 실제환경과 유사함을 갖는 데이터를 취득하였다. 생성한 데이터셋을 이용하여 기존의 새로운 시점을 생성하는 기법 중 하나인 다중 평면 영상(Multi Plane Image) 기반 합성기법을 통해 라이트필드 영상을 합성한다. 제안하는 네트워크는 단안비디오의 연속된 두개의 프레임으로부터 MPI 추정하는 네트워크와 입력영상의 깊이 정보를 추정하는 네트워크로 구성되어 있다.
In this manuscript, a new pansharpening model based on Convolutional Neural Network (CNN) was developed. Dilated convolution, which is one of the representative convolution technologies in CNN, was applied to the model by making it deep and complex to improve the performance of the deep learning architecture. Based on the dilated convolution, the residual network is used to enhance the efficiency of training process. In addition, we consider the spatial correlation coefficient in the loss function with traditional L1 norm. We experimented with Dilated Residual Networks (DRNet), which is applied to the structure using only a panchromatic (PAN) image and using both a PAN and multispectral (MS) image. In the experiments using KOMPSAT-3A, DRNet using both a PAN and MS image tended to overfit the spectral characteristics, and DRNet using only a PAN image showed a spatial resolution improvement over existing CNN-based models.
Journal of the Institute of Electronics Engineers of Korea SC
/
v.45
no.6
/
pp.95-101
/
2008
In this paper, we present a new smoothing algorithm for variable depth mapping for real time stereoscopic image for 3D display. Proposed algorithm is based on the physical concept, called Laplacian equation and we also discuss the mapping of the depth from scene to displayed image. The approach to solve the problem in stereoscopic image which we adopt in this paper is similar to multi-region algorithm which was proposed by N.Holliman. The main difference thing in our algorithm compared with the N.Holliman's multi-region algorithm is that we use the Laplacian equation by considering the distance between viewer and object. We implement the real time stereoscopic image generation method for OpenGL on the circular polarized LCD screen to demonstrate its real functioning in the visual sensory system in human brain. Even though we make and use artificial objects by using OpenGL to simulate the proposed algorithm we assure that this technology may be applied to stereoscopic camera system not only for personal computer system but also for public broad cast system.
측면주사음탐기(side scan sonar) 센서는 해저면의 영상을 실시간으로 탐색하는 장비로서 해양탐사 및 지질조사, 해저통신 및 어초조사, 기뢰 및 잠수정 탐색 등 해양탐사와 관련한 대표적 장비라고 할 수 있다. 센서는 해저와 목표물을 표시하기 위해 소나 플랫폼의 움직임을 사용하며, 동작주파수 범위는 20kHz~500kHz이다. 이 주파수는 요구되는 깊이와 목표물의 크기에 의해서 결정된다. 센서는 수직으로 $45^{\circ}$, 수평으로 $2^{\circ}$ 정도의 신호전파 방사각도 폭을 가진다. 최근에는 해양탐사와 개발을 위해 빠른 스캔속도와 정확한 정보, 고해상도의 영상을 얻기 위해 해저면에 대한 다중빔 영상센서의 핵심기술로 활용되면서 그 활용성과 중요성이 점차 증가되고 있다. 본고에서는 측면주사소나 센서의 기본 원리 및 종류, 디중빔측면주사소나 기술동향, 응용분야의 사례를 소개함으로써, 국내 기반기술 및 상용화 개발이 취약한 측면주사 음탐기 센서에 대한 이해를 돕고자 한다.
The Journal of the Korea institute of electronic communication sciences
/
v.16
no.6
/
pp.1311-1316
/
2021
In this paper, we present a bifocal stereo camera system combining two cameras with different focal length cameras to generate stereoscopic image and their corresponding depth map. In order to obtain the depth data using the bifocal stereo camera system, we perform camera calibration to extract internal and external camera parameters for each camera. We calculate a common image plane and perform a image rectification for generating the depth map using camera parameters of bifocal stereo camera. Finally we use a SGM(Semi-global matching) algorithm to generate the depth map in this paper. The proposed bifocal stereo camera system can performs not only their own functions but also generates distance information about vehicles, pedestrians, and obstacles in the current driving environment. This made it possible to design safer autonomous vehicles.
Deep learning shows differences in prediction performance depending on data quality and model. This study uses various input data and multiple deep learning models to build an optimal deep learning model for predicting solar radiation, which has the most influence on power generation prediction. did. As the input data, the weather data of the Korea Meteorological Administration and the clairvoyant meteorological image were used by segmenting the image of the Korea Meteorological Agency. , comparative evaluation, and predicting solar radiation by constructing multiple deep learning models connecting the models with the best error rate in each model. As an experimental result, the RMSE of model A, which is a multiple deep learning model, was 0.0637, the RMSE of model B was 0.07062, and the RMSE of model C was 0.06052, so the error rate of model A and model C was better than that of a single model. In this study, the model that connected two or more models through experiments showed improved prediction rates and stable learning results.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.