• Title/Summary/Keyword: 다중 공진

Search Result 220, Processing Time 0.025 seconds

Non-Radiative Dielectric(NRD) Rotman Lens with Gap-Coupled Unidirectional Dielectric Radiator(UDR) (갭 결합된 단향성 유전체 방사체를 적용한 비방사 유전체 로트만 렌즈)

  • 이재곤;이정해
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.12
    • /
    • pp.1269-1275
    • /
    • 2003
  • In this paper, nonradiative dielectric(NRD) rotman lens with a gap-coupled unidirectional dielectric radiator(UDR) has been designed. Gap-coupled UDR is structurally suitable for NRD rotman lens. We have optimized NRD rotman lens for minimizing side-lobe, and calculated design parameters of UDR such as length of resonator and distance of gap using an equivalent circuit model of an evanescent NRD guide. Experimental prototype of UDR is fabricated and measured at the center frequency of 38 GHz. The simulated S-parameter and far-field radiation beam pattern of UDR show good agreements with measured data. Finally, total beam pattern of NRD rotman lens of multi-beam feed has been obtained using a measured pattern of UDR and array factor of NRD rotman lens. The obtained beam pattern shows remarkably suppressed side-lobe.

Sectorial Form UWB Antenna with a CPW-fed Uni-Planar (CPW 급전 단일 평면 부채꼴형 UWB 안테나 설계 및 제작)

  • Kim, Nam;Son, Gui-Bum;Park, Sang-Myeong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.3 s.118
    • /
    • pp.305-314
    • /
    • 2007
  • In this paper, we suggested a CPW-fed UWB antenna with uni-planar sectoral structure. The area where radiation device face ground is designed to have the shape of tapered slot based on exponential function. We modified a rectangular bow-tie dipole structure antenna and thus formed a multi-resonant mode. From this, we expanded the impedance bandwidth and made a feature satisfying VSWR of less than 2 between $3.1\sim10.6GHz$. The test result showed that the return loss less than -10 dB was met in the full-band UWB system and maximum gain of $0.9\sim3.1dB$ was made with the half-power beamwidth of $40.1\sim89.9^{\circ}$ on XY plane(Theta, $Phi=90^{\circ}$) and the full band. By using CPW-fed structure with no ground on the back of the substrate, the suggested antenna is easy to design and its miniaturization is also possible.

The fabrication and the analysis on a communication device for bilateral (양방향 통신 장치 제작 및 분석)

  • You, Il-hyun
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.2
    • /
    • pp.83-90
    • /
    • 2018
  • We have studied the optimal conditions for design and development on the communication device for a bilateral, and it's electrodes for transmitting electric signal are constructed on the $36^{\circ}$ rotated $LiTaO_3$ substrate by evaporating Al-Cu(W 30%) alloy. At first, we manufactured three kind of samples using this method, and selected two samples as similar with frequency, ripple and passband characteristics, and then we connect two samples by series in order to make bilateral devices. As results, we obtained that the electrode structure has better characteristics then the others, when it's width of reflector and electrode are $1{\lambda}/4$, $1{\lambda}/12$ respectively, and it's frequency is approximately 190.3MHz. Near future, I hope to help the manufacture for communication devices for the multi-channel and the duplex filter.

The Design of U-Slot Stack Structure Antenna for 800MHz Band Coastal Sea Base Station Applications (800MHz 대역 연안해역기지국용 U-Slot 적층구조 안테나 설계)

  • Kim, Kab-Ki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.6
    • /
    • pp.984-989
    • /
    • 2008
  • In this paper, we will design a 800MHz broadband antenna after a problem of the narrow bandwidth is improved. This multiple band antenna unifies the CDMA(Code Division Multiple Access), GSM(Global System for Mobile Telecommunication) and TRS(Trunked Radio System) band in the UHF band, and then it is possible at the shore base station or repeater as the commercial use. It used the duplex resonance effect it had the L-shared feeding structure which adds the U-slot. And it improved profit using stack structure. It was measured that the frequency bandwidth of the designed antenna which is planed $792{\sim}1040MHz$ with 248MHz(33%). And the antenna gain is 9.4dBi, 3dB beam width $60^{\circ}$ in radiation pattern.

Design and Simulation of an On-body Microstrip Patch Antenna for Lower Leg Osteoporosis Monitoring (하지 골다공증 감시를 위한 온-바디 마이크로 스트립 패치 안테나의 설계 및 모의실험)

  • Kim, Byung-Mun;Yun, Lee-Ho;Lee, Sang-Min;Park, Young-Ja;Hong, Jae-Pyo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.763-770
    • /
    • 2021
  • In this paper, in order to exclude the influence of BAN(Body Area Network) signals operating in the ISM band, the design and optimization process of an on-body microstrip patch antenna operating at 4.567 GHz is presented. The antenna for the monitoring of the lower legs with cancellous osteoporosis is designed to be lightweight and compact with improved return loss and bandwidth. The structure around the applied lower leg consisted of a five-layer dielectric plane. Taking into account losses, the complex dielectric constant of each layer is calculated using multi Cole-Cole model parameters, whereas a unipolar model is used for normal or osteoporotic cancellous bones. The return loss of the coaxial feed antenna on the phantom is -67.26 dB at 4.567 GHz, and in the case of osteoporosis, at the same frequency the return loss difference is 35.88 dB, and the resonance frequency difference is about 7 MHz.

Two-dimensional OCDMA Encoder/Decoder Composed of Double Ring Add/Drop Filters and All-pass Delay Filters (이중 링 Add/Drop 필터와 All-pass 지연 필터로 구성된 이차원 OCDMA 인코더/디코더)

  • Chung, Youngchul
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.3
    • /
    • pp.106-112
    • /
    • 2022
  • A two-dimensional optical code division multiple access (OCDMA) encoder/decoder, which is composed of add/drop filters and all-pass filters for delay operation, is proposed. An example design is presented, and its feasibility is illustrated through numerical simulations. The chip area of the proposed OCDMA encoder/decoder could be about one-third that of a previous OCDMA device employing delay waveguides. Its performance is numerically investigated using the transfer-matrix method combined with the fast Fourier transform. The autocorrelation peak level over the maximum cross-correlation level for incorrect wavelength hopping and spectral phase code combinations is greater than 3 at the center of the correctly decoded pulse, which assures a bit error rate lower than 10-3, corresponding to the forward error-correction limit.

A Study on Digital Communication in Air Using Parametric Array (파라메트릭 어레이를 이용한 공기 중 디지털 통신 연구)

  • Je, Yub;Lee, Jae-Il;Lee, Chong-Hyun;Moon, Won-Kyu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.8
    • /
    • pp.768-773
    • /
    • 2009
  • This paper demonstrates the digital communication in air using the parametric array. The stepped-plate transducer which is suitable for high-power and high-efficient radiation is used to generate the difference frequency wave with the parametric array. The primary frequencies are selected to 83 kHz and 122 kHz and the resulting difference frequency wave at the frequency of 39 kHz is used for the communication. The modulation method is selected to On-Off Keying method. The waveform and signal-to-noise ratio (SNR) is measured and analyzed to see the characteristics of the digital communication using the parametric array. The proper distance for the communication using parametric array is about 3 m. The measured beam width of the 3dB SNR reduction was $14^{\circ}$. The possibility of the communication in air using the parametric array is confirmed and the high directional characteristic of the communication using the parametric array is expected to have the advantages for the multi path and the security problems.

Design of a Multi-band Internal Antenna Using Half Wavelength Loaded Line Structure for Mobile Handset Applications (반파장 로디드 라인 구조를 이용한 이동 통신 단말기용 다중 대역 내장형 안테나 설계)

  • Shin Hoo;Jung Woo-Jae;Jung Byungwoon;Park Myun-Joo;Lee Byungje
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.12 s.103
    • /
    • pp.1179-1185
    • /
    • 2005
  • In this paper, novel internal antenna with its controllable resonant frequency is presented for triple-band or over mobile handsets. The operating range can include GSM(880${\~}$960 MHz), GPS(1,575$\pm$10 MHz), DCS(1,710${\~}$1,880 MHz), US-PCS(1,850${\~}$l,990 MHz), and W-CDMA(1,920${\~}$2,170 MHz). The proposed antenna is realized by combination of a half wavelength loaded line and a shorted monopole. A single shorting and feeding points are used and they are common to both antenna structures. By controlling a value of lumped inductance element between shorting point and ground plane, the antenna provides enough bandwidth to cover DCS, US-PCS, and W-CDMA respectively. When these higher bands are controlled by the values of inductance, resonant characteristics in GSM and GPS bands are maintained. In this work, maximum value of the inductor is limited within 3.3 nH to mitigate gain degradation from frequency tuning. As a result, measured maximum gain of antenna is -0.58${\~}$-0.30 dBi in the GSM band, -0.57${\~}$0.43 dBi in the GPS band and 0.38${\~}$1.15 dBi in the DCS/US-PCS/W-CDMA band. In higher band, the proposed antenna is certified that resonant frequency of about 240 MHz can be effectively controlled within gain variation of about 0.77 dB by simulation and measurement.

Design and SAR Analysis of Broadband Monopole Antenna Using Loop and T-Shaped Patches (사각 루프와 T자형 패치를 결합한 광대역 평면형 모노폴 안테나 설계 및 SAR 분석)

  • Jang, Ju-Dong;Lee, Seungwoo;Kim, Nam;Choi, Dong-Geun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • In this paper, a broadband planar monopole antenna for multi-band services is proposed. The physical size of the proposed antenna is miniaturized by folding a rectangular loop. And a resonance point in the 3.9 GHz band is reduced by a coupling phenomenon with the central part of the T-shaped patch and the folded rectangular loop. In addition, the T-shaped patch is inserted to the rectangular shaped monopole antenna due to deriving the broadband frequency characteristics. The frequency characteristic is optimized by adjusting the gap and length of the folded rectangular loops and a transverse diameter of the T-shaped patch. The antenna dimensions including the ground plane are $40{\times}60{\times}1.6mm^3$. It is fabricated on the FR-4 substrate(${\epsilon}_r$=4.4) using a microstrip line of $50{\Omega}$ for impedance matching. In the measured result, the bandwidth corresponding to the VSWR of 2:1 is 162 MHz(815~977 MHz) and 2,530 MHz(1.43~3.96 GHz). For analyzing the human effect by the proposed antenna, 1 g and 10 g averaged SARs are simulated and measured. As the simulated results, 1 g-averaged SAR is 1.044 W/kg, and 10 g-averaged SAR is 0.718 W/kg. This result are satisfied by the SAR guidelines which are 1.6 W/kg(1 g-averaged) and 2.0 W/kg(10 g-averaged).

A triple band printed monopole antenna with a bent branch strips for WiFi / 5G (와이파이 및 5G용 굽은 가지 스트립을 가진 삼중대역 인쇄형 모노폴 안테나)

  • Min-Woo Kim;Dong-Gi Shin;Oh-Rim Ryu;Young-Soon Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.536-542
    • /
    • 2021
  • In this paper, we proposed a triple band printed monopole antenna with a bent branch strips for WiFi / 5G. An antenna structure in which bent strips for generating multiple resonance are attached in the form of branches was newly proposed based on a typical monopole strip vertically erected as a triple band antenna structure. The proposed antenna is designed on a FR-4 substrate with dielectric constant 4.3, thickness of 1.6 mm, and size of 28×40 mm2. The measured impedance bandwidth is 430 MHz (2.22~2.65 GHz) in the 2.4 GHz WLAN, 450 MHz (3.38~3.83 GHz) in the 3.5 GHz and 2390 MHz (4.95~7.34 GHz), In particular, it has been observed that antenna has a stable omnidirectional radiation patterns as well as gain of 1.537 dBi, 1.878 dBi and 2.337 dBi in the entire frequency band of interest.