• 제목/요약/키워드: 다중퍼셉트론

검색결과 40건 처리시간 0.025초

다중 신경회로망을 이용한 특징정보 융합과 적외선영상에서의 표적식별에의 응용 (Feature information fusion using multiple neural networks and target identification application of FLIR image)

  • 선선구;박현욱
    • 대한전자공학회논문지SP
    • /
    • 제40권4호
    • /
    • pp.266-274
    • /
    • 2003
  • 전방 관측 적외선 영상에서 가려짐이 없는 표적과 부분적으로 가려진 표적을 식별하기 위해 국부적 표적 경계선에 대한 거리함수의 푸리에기술자와 다중의 다층 퍼셉트론을 사용한 특징정보 융합 방법을 제안한다. 표적을 배경으로부터 분리한 후에 표적 경계선의 중심을 기준으로 푸리에 기술자를 구해 전역적 특징으로 사용한다. 국부적인 형상 특징을 찾기 위해 표적 경계선을 분할하여 4개의 국부적 경계선을 만들고, 각 국부적 경계선에서 두 개의 극단점이 이루는 직선과 경계선 픽셀로부터 거리함수를 정의한다. 거리함수에 대한 푸리에 기술자를 국부적 형상특징으로 사용한다. 1개의 광역적 특징 백터와 4개의 국부적 특징 백터를 정의하고 다중의 다층 퍼셉트론을 사용하여 특징정보들을 융합함으로써 최종 표적식별 결과를 얻는다. 실험을 통해 기존의 특징벡터들에 의한 표적식별 방법과 비교하여 제안한 방법의 우수성을 입증한다.

다중 다층 퍼셉트론을 이용한 저해상도 홍채 영상의 고해상도 복원 연구 (A Study on the Restoration of a Low-Resoltuion Iris Image into a High-Resolution One Based on Multiple Multi-Layered Perceptrons)

  • 신광용;강병준;박강령;신재호
    • 한국멀티미디어학회논문지
    • /
    • 제13권3호
    • /
    • pp.438-456
    • /
    • 2010
  • 홍채 인식은 고유한 홍채 패턴을 이용하여 신원을 확인하는 생체 인식 기술이다. 일반적으로 홍채인식에서 는 홍채 직경이 200 화소(pixel) 이상 되는 고해상도 홍채 영상을 사용하며, 이런 경우 인식률 감소 없이 정확한 홍채 인식 결과를 얻는다고 알려져 있다. 이를 위해 기존의 홍채 인식 시스템들은 줌렌즈 카메라를 사용하지만, 이러한 카메라는 홍채 인식기의 가격과 크기를 증가시키는 요인이 된다. 이러한 문제를 해결하기 위하여 본 연구에서는 줌렌즈 카메라의 사용 없이 저해상도로 취득된 홍채 영상에서의 인식 정확도를 향상할 수 있는 방법을 제안한다. 본 연구에서는 기존의 방법과 비교하여 다음과 같은 두 가지 장점을 갖는다. 첫째, 기존의 연구에서는 홍채 직경이 200 화소 이하인 저해상도 영상에서의 홍채 인식 성능 감소에 대한 정량적 분석이 진행된 바 없다. 본 연구에서는 홍채 영상의 초점 정도, 눈꺼풀 및 속눈썹 가림 정도의 영향을 배제하고, 홍채 영상의 크기 변화에 따른 인식율의 저하정도를 정량적으로 파악하였다. 둘째, 한 장의 저해상도 홍채 영상을 고해상도 영상으로 복원하기 위해 홍채 영역의 에지 방향에 따라 개별적으로 다르게 학습된 다중 다층 퍼셉트론을 적용함으로써, 복원된 영상에서의 인식 정확도를 향상시켰다. 원 영상대비 6%만큼의 크기로 축소한 저해상도 홍채 영상을 고해상도 영상으로 복원한 결과, 제안하는 방법에 의한 홍채 인식의 EER이 기존의 이중선형보간법에 의한 EER보다 0.133% (1.485% - 1.352%) 만큼 감소됨을 알 수 있었다.

퍼셉트론을 이용한 다중 분기 예측법 (The Multiple Branch Predictor Using Perceptrons)

  • 이종복
    • 전기학회논문지
    • /
    • 제58권3호
    • /
    • pp.621-626
    • /
    • 2009
  • This paper presents a multiple branch predictor using perceptrons. The key idea is to apply neural networks to the multiple branch predictor. We describe our design and evaluate it with the SPEC 2000 integer benchmarks. Our predictor achieves increased accuracy than the Bi-Mode and the YAGS multiple branch predictor with the same hardware cost.

다층 퍼셉트론 기반 고해상도 위성영상의 상대 방사보정 (Relative Radiometric Normalization for High-Spatial Resolution Satellite Imagery Based on Multilayer Perceptron)

  • 서대교;어양담
    • 한국측량학회지
    • /
    • 제36권6호
    • /
    • pp.515-523
    • /
    • 2018
  • 다중시기의 위성영상에 대해 일관성 있는 변화탐지 결과를 획득하기 위해서는 전처리 과정이 필수적으로 이루어져야 한다. 특히, 분광값과 관련된 전처리 과정은 방사보정으로 수행될 수 있으며, 일반적으로 상대 방사보정이 활용되고 있다. 하지만, 대부분의 상대 방사보정은 두 영상간의 관계를 선형으로 가정하며, 생태학적 차이와 같은 비선형적인 분광특성은 고려되지 않는다. 따라서, 본 연구에서는 방사 및 생태학적 특성에 대한 복합적인 보정을 수행할 수 있는 비선형적인 관계를 가정한 상대 방사보정을 제안하였다. 제안된 방법은 입력영상 및 참조영상을 선정하고, no-change method를 통해 radiometric control set samples를 추출하였다. 또한, 충분한 정보를 고려하기 위하여 화소값뿐만 아니라 분광지수들이 추출되었고, 비선형적인 관계의 모델링은 다층 퍼셉트론을 통해 수행되었다. 최종적으로 기존의 상대 방사보정기법과 비교 분석을 수행하였고, 시각적 및 정략적으로 평가한 결과 제안된 방법이 기존의 상대 방사보정보다 우수한 것을 확인하였다.

심층 CNN을 활용한 영상 분위기 분류 및 이를 활용한 동영상 자동 생성 (Image Mood Classification Using Deep CNN and Its Application to Automatic Video Generation)

  • 조동희;남용욱;이현창;김용혁
    • 한국융합학회논문지
    • /
    • 제10권9호
    • /
    • pp.23-29
    • /
    • 2019
  • 본 연구에서는 영상의 분위기를 심층 합성곱 신경망을 통해 8 가지로 분류하고, 이에 맞는 배경 음악을 적용하여 동영상을 자동적으로 생성하였다. 수집된 이미지 데이터를 바탕으로 다층퍼셉트론을 사용하여 분류 모델을 학습한다. 이를 활용하여 다중 클래스 분류를 통해 동영상 생성에 사용할 이미지의 분위기를 예측하며, 미리 분류된 음악을 매칭시켜 동영상을 생성한다. 10겹 교차 검증의 결과, 72.4%의 정확도를 얻을 수 있었고, 실제 영상에 대한 실험에서 64%의 오차 행렬 정확도를 얻을 수 있었다. 오답의 경우, 주변의 비슷한 분위기로 분류하여 동영상에서 나오는 음악과 크게 위화감이 없음을 확인하였다.

통계적 모의실험을 이용하는 프로세서의 성능 모델 (The Processor Performance Model Using Statistical Simulation)

  • 이종복
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제33권5호
    • /
    • pp.297-305
    • /
    • 2006
  • 마이크로 프로세서 구조의 성능을 분석할 때, 트레이스 구동형 모의실험이 광범위하게 수행되고 있으나, 시간과 공간을 많이 차지하기 때문에 최근에 이르러 통계적 모의실험이 그 대안으로 떠오르고 있다. 기존의 통계적 모의실험이 단일 분기 예측법에 대하여 연구가 수행된 것과 달리, 본 논문에서는 다중 분기 예측법을 이용하는 고성능 수퍼스칼라 프로세서에 대한 통계적 프로화일링 모델을 제안하였다. 이때, 다중 분기 예측법은 최근 들어 유망한 기법으로 대두되고 있는 퍼셉트론 분기 예측법을 기반으로 하였다. 이것을 위하여 SPEC 2000 벤치마크 프로그램의 특성을 통계적 프로화일링 기법으로 모델링하고, 여기서 얻은 통계적 프로화일을 바탕으로 벤치마크 트레이스를 합성하여 모의실험을 수행하였다. 그 결과, 제안하는 방식으로 다중 분기 예측을 이용하는 수퍼스칼라 프로세서에서도 비교적 높은 정확도를 얻을 수 있었다.

수질오염사고를 위한 지능형 경보 기법 (The intelligent warning method for the water pollution accident)

  • 연인성;이재경;이재관;안상진
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2007년도 학술발표회 논문집
    • /
    • pp.1043-1047
    • /
    • 2007
  • 수질오염사고로 발생할 수 있는 시나리오를 통해서 스스로 수질오염사고를 판단할 수 있는 지능형 알고리즘들을 검토하였다. 지능형 알고리즘의 학습을 위해 개발된 기준축과 학습지표는 적절한 결과를 유도하는데 유용하였다. 다층신경망, 뉴로-퍼지 알고리즘은 TOC와 DO의 이상 수질에 대하여 안정, 주의, 경고 상태를 적합하게 구별하는 것으로 나타났으며, 다중퍼셉트론 알고리즘은 모호한 자료에 대해서는 판단능력이 부족한 것으로 나타났다. 구조가 단순하지만 양방향 연산을 수행하는 BAM(Bidirectional Associative Memory) 알고리즘은 다층신경망과 뉴로-퍼지 알고리즘과 비교할 때, 학습 및 구동시간이 짧을 뿐만아니라 결과 또한 안정적인 것으로 나타났다.

  • PDF

DS/CDMA통신에서 다경로 페이딩 간섭 제거를 위한 반복적 최소 자승 역전파 신경망 알고리즘 (Recursive Least Square Backpropagation Neural Network Algorithm for Rejection of Multi-path Fading Interference in DS/CDMA Communication Systems)

  • 김광준;나상동
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제26권4호
    • /
    • pp.464-471
    • /
    • 1999
  • DS/CDMA 시스템은 이동통신 시스템에서 다중경로, 고의적인 반방해 전파 및 동일대역폭을 공유하기 위한 다중 사용자에 의해 발생되는 협대역 간섭과 부가적인 백색가우시안 잡음을 제거한다. 본 논문에서는 다계층 퍼셉트론을 기반으로 한 역전파 신경망을 이용한 정합필터 채널 모델이 DS/CDMA 이동 통신 시스템에서 직접 순차 확산 스펙트럼의 협대역 간섭을 고려하면서 신호 대 잡음비와 전송 전력비에 따른 컴퓨터시뮬레이션 결과는 역전파 신경망을 이용한 정합 필터의 비트 에러율이 직접 순차 확산 스펙트럼의 RAKE 수신기의 비트 에러 율보다 적음을 입증하였다.

얼굴의 움직임을 이용한 다중 모드 인터페이스에서의 응시 위치 추출 (Gaze Detection Using Facial Movement in Multimodal Interface)

  • 박강령;남시욱;한승철;김재희
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 1997년도 한국감성과학회 연차학술대회논문집
    • /
    • pp.168-173
    • /
    • 1997
  • 시선의 추출을 통해 사용자의 관심 방향을 알고자하는 연구는 여러 분야에 응용될 수 있는데, 대표적인 것이 장애인의 컴퓨터 이용이나, 다중 윈도우에서 마우스의 기능 대용 및, VR에서의 위치 추적 장비의 대용 그리고 원격 회의 시스템에서의 view controlling등이다. 기존의 대부분의 연구들에서는 얼굴의 입력된 동영상으로부터 얼굴의 3차원 움직임량(rotation, translation)을 구하는데 중점을 두고 있으나 [1][2], 모니터, 카메라, 얼굴 좌표계간의 복잡한 변환 과정때문에 이를 바탕으로 사용자의 응시 위치를 파악하고자하는 연구는 거으 이루어지지 않고 있다. 본 논문에서는 일반 사무실 환경에서 입력된 얼굴 동영상으로부터 얼굴 영역 및 얼굴내의 눈, 코, 입 영역 등을 추출함으로써 모니터의 일정 영역을 응시하는 순간 변화된 특징점들의 위치 및 특징점들이 형성하는 기하학적 모양의 변화를 바탕으로 응시 위치를 계산하였다. 이때 앞의 세 좌표계간의 복잡한 변환 관계를 해결하기 위하여, 신경망 구조(다층 퍼셉트론)을 이용하였다. 신경망의 학습 과정을 위해서는 모니터 화면을 15영역(가로 5등분, 세로 3등분)으로 분할하여 각 영역의 중심점을 응시할 때 추출된 특징점들을 사용하였다. 이때 학습된 15개의 응시 위치이외에 또 다른 응시 영역에 대한 출력값을 얻기 위해, 출력 함수로 연속적이고 미분가능한 함수(linear output function)를 사용하였다. 실험 결과 신경망을 이용한 응시위치 파악 결과가 선형 보간법[3]을 사용한 결과보다 정확한 성능을 나타냈다.

  • PDF

기계 학습을 활용한 이미지 결함 검출 모델 개발 (Development of Image Defect Detection Model Using Machine Learning)

  • 이남영;조혁현;정희택
    • 한국전자통신학회논문지
    • /
    • 제15권3호
    • /
    • pp.513-520
    • /
    • 2020
  • 최근 기계 학습을 활용한 비전 검사 시스템의 개발이 활발해지고 있다. 본 연구는 기계 학습을 활용한 결함 검사 모델을 개발하고자 한다. 이미지에 대한 결함 검출 문제는 기계 학습에 있어 지도 학습 방법인 분류 문제에 해당한다. 본 연구에서는 특징을 자동 추출하는 알고리즘과 특징을 추출하지 않는 알고리즘을 기반으로 결함 검출 모델을 개발한다. 특징을 자동 추출하는 알고리즘으로 1차원 합성곱 신경망과 2차원 합성곱 신경망을 활용하였으며, 특징을 추출하지 않는 알고리즘으로 다중 퍼셉트론, 서포트 벡터 머신을 활용하였다. 4가지 모델을 기반으로 결함 검출 모델을 개발하였고 이들의 정확도와 AUC를 기반으로 성능 비교하였다. 이미지 분류는 합성곱 신경망을 활용한 모델 개발이 일반적임에도, 본 연구에서 이미지의 화소를 RGB 값으로 변환하여 서포트 벡터 머신 모델을 개발할 때 높은 정확도와 AUC를 얻을 수 있었다.