• Title/Summary/Keyword: 다중퍼셉트론

Search Result 40, Processing Time 0.028 seconds

Optimal Learning Rates in Gradient Descent Training of Multilayer Perceptrons (다층퍼셉트론의 강하 학습을 위한 최적 학습률)

  • 오상훈
    • The Journal of the Korea Contents Association
    • /
    • v.4 no.3
    • /
    • pp.99-105
    • /
    • 2004
  • This paper proposes optimal learning rates in the gradient descent training of multilayer perceptrons, which are a separate learning rate for weights associated with each neuron and a separate one for assigning virtual hidden targets associated with each training pattern Effectiveness of the proposed error function was demonstrated for a handwritten digit recognition and an isolated-word recognition tasks and very fast learning convergence was obtained.

  • PDF

Prediction of dairy cow mastitis with multi-sensor data using Multi-Layer Perceptron(MLP) (다중 센서 데이터와 다층 퍼셉트론을 활용한 젖소의 유방염 진단 예측)

  • Song, Hye-Won;Park, Gi-Cheol;Park, JaeHwa
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.788-791
    • /
    • 2020
  • 낙농업에서 경제적 손실을 불러일으키고 관찰 시간과 비용이 필요한 젖소의 유방염 관리는 중요하다. 그러나 지금까지의 연구는 유방염 진단에 초점을 맞추고 있고, 예측하려는 시도는 전무하다. 유방염에 걸린 개체는 며칠 동안 우유를 생산할 수 없기 때문에 낙농가에 막대한 피해를 준다. 따라서 젖소가 유방염에 걸려 증상이 나타나기 전에 미리 파악해 조처를 할 수 있도록 하는 것이 중요하다. 이에 본 연구는 유방염 예측을 위해 생체 데이터를 포함한 다중 센싱 데이터를 사용해 유방염 예측 모델을 개발하였다. 모델에 사용된 데이터는 충청남도의 농가에 설치된 로봇 착유기로 부터 수집하였으며, 일정 기간 동안의 다중 센싱 데이터를 바탕으로 다음 날의 유방염 여부를 예측한다. 많은 양의 비선형 데이터를 효과적으로 처리하기 위해 다층 퍼셉트론을 사용해 모델을 학습하였다. 그 결과, 81.6%의 예측 정확도를 보였으며 교차 검증을 통해 정확도뿐만 아니라 재현율까지 우수함을 확인할 수 있었다.

Bayesian Texture Segmentation Using Multi-layer Perceptron and Markov Random Field Model (다층 퍼셉트론과 마코프 랜덤 필드 모델을 이용한 베이지안 결 분할)

  • Kim, Tae-Hyung;Eom, Il-Kyu;Kim, Yoo-Shin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.1
    • /
    • pp.40-48
    • /
    • 2007
  • This paper presents a novel texture segmentation method using multilayer perceptron (MLP) networks and Markov random fields in multiscale Bayesian framework. Multiscale wavelet coefficients are used as input for the neural networks. The output of the neural network is modeled as a posterior probability. Texture classification at each scale is performed by the posterior probabilities from MLP networks and MAP (maximum a posterior) classification. Then, in order to obtain the more improved segmentation result at the finest scale, our proposed method fuses the multiscale MAP classifications sequentially from coarse to fine scales. This process is done by computing the MAP classification given the classification at one scale and a priori knowledge regarding contextual information which is extracted from the adjacent coarser scale classification. In this fusion process, the MRF (Markov random field) prior distribution and Gibbs sampler are used, where the MRF model serves as the smoothness constraint and the Gibbs sampler acts as the MAP classifier. The proposed segmentation method shows better performance than texture segmentation using the HMT (Hidden Markov trees) model and HMTseg.

Recognition of characters on car number plate and best recognition ratio among their layers using Multi-layer Perceptron (다중퍼셉트론을 이용한 자동차 번호판의 최적 입출력 노드의 비율 결정에 관한 연구)

  • Lee, Eui-Chul;Lee, Wang-Heon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.1
    • /
    • pp.73-80
    • /
    • 2016
  • The Car License Plate Recognition(: CLPR) is required in searching the hit-and-run car, measuring the traffic density, investigating the traffic accidents as well as in pursuing vehicle crimes according to the increasing in number of vehicles. The captured images on the real environment of the CLPR is contaminated not only by snow and rain, illumination changes, but also by the geometrical distortion due to the pose changes between camera and car at the moment of image capturing. We propose homographic transformation and intensity histogram of vertical image projection so as to transform the distorted input to the original image and cluster the character and number, respectively. Especially, in this paper, the Multilayer Perceptron Algorithm(: MLP) in the CLPR is used to not only recognize the charcters and car license plate, but also determine the optimized ratio among the number of input, hidden and output layers by the real experimental result.

A Detection for Signal using Single Layer Perceptron (단층 퍼셉트론을 이용한 QPSK 신호의 검파)

  • 조순계;최형기;김종교
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.72-77
    • /
    • 1998
  • 이동통신에서는 송수신이 이루어지는 전파환경에 따라 직접파와 다중경로에 기인한 간접파에 의한 페이딩, 잡음, 간섭 등의 영향을 받게 된다. 이 논문에서는 복잡하고 다양한 유형의 수신신호 중 원하는 신호정보를 정확히 추출하기 위해 인공신경회로망 (ANN:Artivicial Neural Network)을 이용한다. 인공 신경회로망의 하나인 단층 퍼셉트론을 이용한 검파기를 제안하고, QPSK 변조방식을 이용하여 시뮬레이션을 행하고, 결과 분석을 통해 제안 시스템의 활용 가능성을 확인하다.

  • PDF

Prediction of Wind Power Generation for Calculation of ESS Capacity using Multi-Layer Perceptron (ESS 용량 산정을 위한 다층 퍼셉트론을 이용한 풍력 발전량 예측)

  • Choi, Jeong-Gon;Choi, Hyo-Sang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.2
    • /
    • pp.319-328
    • /
    • 2021
  • In this paper, we perform prediction of amount of electric power plant for complex of wind plant using multi-layer perceptron in order to calculate exact calculation of capacity of ESS to maximize profit through generation and to minimize generation cost of wind generation. We acquire wind speed, direction of wind and air density as variables to predict the amount of generation of wind power. Then, we merge and normalize there variables. To train model, we divide merged variables into data as train and test data with ratio of 70% versus 30%. Then we train model by using training data, and we alsouate the prediction performance of model by using test data. Finally, we present the result of prediction in amount of wind power.

A Development of Real Time Artificial Intelligence Warning System Linked Discharge and Water Quality (II) Construction of Warning System (유량과 수질을 연계한 실시간 인공지능 경보시스템 개발 (II) 경보시스템 구축)

  • Yeon, In-Sung;Ahn, Sang-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.7 s.156
    • /
    • pp.575-584
    • /
    • 2005
  • The judgement model to warn of possible pollution accident is constructed by multi-perceptron, multi layer neural network, neuro-fuzzy and it is trained stability, notice, and warming situation due to developed standard axis. The water quality forecasting model is linked to the runoff forecasting model, and joined with the judgement model to warn of possible pollution accident, which completes the artificial intelligence warning system. And GUI (Graphic User Interface) has been designed for that system. GUI screens, in order of process, are main page, data edit, discharge forecasting, water quality forecasting, warming system. The application capability of the system was estimated by the pollution accident scenario. Estimation results verify that the artificial intelligence warning system can be a reasonable judgement of the noized water pollution data.

Tap-Weight Update Multilayer Neural Network using BISP Algorithm in DS/SS Communication (DS/SS 통신에서 BISP 알고리즘을 이용한 탭 가중치 갱신)

  • 석경휴;김문환;임영진;김광준;배철수;나상동
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.712-716
    • /
    • 2003
  • 본 논문은 신경망을 이용한 간섭 신호 제어로써 복합 다중 퍼셉트론에서 DS/SS 이동 통신에서의 수신된 신호들을 역전파 학습알고리즘을 이용하여 검출하는 것에 대하여 연구한다. 수신 신호가 일정한 비트율을 갖는 채널에 전송하기 위하여 신경망을 이용한 새로운 탭 가중치 갱신 제어 방법을 제안한다. 적응 횡단선 필터는 심볼간의 채널에 발생하는 상호 심볼간 간섭을 억압하기 위해 LMS 알고리즘 사용한다. 이 알고리즘은 원하는 응답과 실제 출력간의 차인 에러를 이용하여 탭 가중치 조절 메카니즘을 통해 탭 가중치를 갱신함으로서 효과적으로 간섭을 제거하였다. 본 논문은 상호 심볼간 간섭을 효율적으로 억압해온 기존의 LMS 알고리즘에 다계층 퍼셉트론 신경망을 조합한 새로운 BISP 알고리즘을 제안하였으며, 제안된 알고리즘을 통해 탭 가중치 갱신이 보다 효율적으로 이루어짐을 알 수 있다. 시뮬레이션 결과를 통해 제안된 알고리즘의 평균 자승 에러의 수렴 특성이 기존 LMS 알고리즘을 이용한 수렴특성보다 우월하다는 것을 나타내었다.

  • PDF

SOM_Based Generalization for Multiagent Reinforcement Learning (다중 에이전트 강화학습을 위한 SOM 기반의 일반화)

  • Lim, Mun-Tack;Kim, In-Cheol
    • Annual Conference of KIPS
    • /
    • 2002.04a
    • /
    • pp.565-568
    • /
    • 2002
  • 본 논문에서는 에이전트간의 통신이 불가능한 다중 에이전트 환경에서 각 에이전트들이 독립적이면서 대표적인 강화학습법인 Q-학습을 전개함으로써 서로 효과적으로 협조할 수 있는 행동전략을 학습하려고 한다. 하지만 단일 에이전트 경우에 비해 보다 큰 상태-행동공간을 갖는 다중 에이전트환경에서는 강화학습을 통해 효과적으로 최적의 행동 전략에 도달하기 어렵다는 문제점이 있다. 이 문제에 대한 기존의 접근방법은 크게 모듈화 방법과 일반화 방법이 제안되었으나 모두 나름의 제한을 가지고 있다. 본 논문에서는 대표적인 다중 에이전트 학습 문제의 예로서 the Prey and Hunters Problem를 소개하고 이 문제영역을 통해 이와 같은 강화학습의 문제점을 살펴보고, 해결책으로 신경망 SOM 을 이용한 일반화 방법을 제안한다. 이 방법은 다층 퍼셉트론 신경망과 역전파 알고리즘을 이용한 기존의 일반화 방법과는 달리 군집화 기능을 제공하는 신경망 SOM 을 이용함으로써 명확한 다수의 훈련 예가 없어도 효과적으로 채 경험하지 못한 상태-행동들에 대한 Q 값을 예측하고 이용할 수 있다는 장점이 있다.

  • PDF