• 제목/요약/키워드: 다중퍼셉트론

검색결과 40건 처리시간 0.026초

다층퍼셉트론의 강하 학습을 위한 최적 학습률 (Optimal Learning Rates in Gradient Descent Training of Multilayer Perceptrons)

  • 오상훈
    • 한국콘텐츠학회논문지
    • /
    • 제4권3호
    • /
    • pp.99-105
    • /
    • 2004
  • 이 논문은 다층퍼셉트론의 학습을 빠르게 하기 위한 최적 학습률을 제안한다. 이 학습률은 한 뉴런에 연결된 가중치들에 대한 학습률과, 중간층에 가상의 목표값을 설정하기 위한 학습률로 나타난다. 그 결과, 중간층 가중치의 최적 학습률은 가상의 중간층 목표값 할당 성분과 중간층 오차함수를 최소화 시키고자하는 성분의 곱으로 나타난다. 제안한 방법은 고립단어인식과 필기체 숫자 인식 문제의 시뮬레이션으로 효용성을 확인하였다.

  • PDF

다중 센서 데이터와 다층 퍼셉트론을 활용한 젖소의 유방염 진단 예측 (Prediction of dairy cow mastitis with multi-sensor data using Multi-Layer Perceptron(MLP))

  • 송혜원;박기철;박재화
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.788-791
    • /
    • 2020
  • 낙농업에서 경제적 손실을 불러일으키고 관찰 시간과 비용이 필요한 젖소의 유방염 관리는 중요하다. 그러나 지금까지의 연구는 유방염 진단에 초점을 맞추고 있고, 예측하려는 시도는 전무하다. 유방염에 걸린 개체는 며칠 동안 우유를 생산할 수 없기 때문에 낙농가에 막대한 피해를 준다. 따라서 젖소가 유방염에 걸려 증상이 나타나기 전에 미리 파악해 조처를 할 수 있도록 하는 것이 중요하다. 이에 본 연구는 유방염 예측을 위해 생체 데이터를 포함한 다중 센싱 데이터를 사용해 유방염 예측 모델을 개발하였다. 모델에 사용된 데이터는 충청남도의 농가에 설치된 로봇 착유기로 부터 수집하였으며, 일정 기간 동안의 다중 센싱 데이터를 바탕으로 다음 날의 유방염 여부를 예측한다. 많은 양의 비선형 데이터를 효과적으로 처리하기 위해 다층 퍼셉트론을 사용해 모델을 학습하였다. 그 결과, 81.6%의 예측 정확도를 보였으며 교차 검증을 통해 정확도뿐만 아니라 재현율까지 우수함을 확인할 수 있었다.

다층 퍼셉트론과 마코프 랜덤 필드 모델을 이용한 베이지안 결 분할 (Bayesian Texture Segmentation Using Multi-layer Perceptron and Markov Random Field Model)

  • 김태형;엄일규;김유신
    • 대한전자공학회논문지SP
    • /
    • 제44권1호
    • /
    • pp.40-48
    • /
    • 2007
  • 이 논문은 다중 스케일 베이지안 관점에서 다층 퍼셉트론과 마코프 랜덤 필드를 사용한 새로운 결 분할 방법을 제안한다. 다층 퍼셉트론의 출력은 사후 확률을 모델링하므로 본 논문에서는 다중 스케일 웨이블릿 계수들을 다층 퍼셉트론의 입력으로 사용한다. 다층 퍼셉트론으로부터 구한 사후 확률과 MAP (maximum a posterior) 분류를 이용하여 각 스케일에서 결 분류를 수행한다. 또한 가장 섬세한 스케일에서 더 개선된 분할 결과를 얻기 위하여 모든 스케일에서 MAP 분류 결과들을 거친 스케일에서 섬세한 스케일까지 차례로 융합한다. 이런 과정은 한 스케일에서의 분류 정보와 그 인접한 보다 거친 스케일에서 얻어지는 문맥과 관련한 연역적 정보를 이용하여 MAP 분류를 행함으로써 이루어진다. 이 융합 과정에서, MRF (Markov random fields) 사전 모델이 평탄화 제한자로서 동작하고, 깁스 샘플러 (Gibbs sampler)는 MAP 분류기로서 동작한다. 제안한 분할 방법은 HMT (Hidden Markov Trees) 모델과 HMTseg 알고리즘을 이용한 결 분할 방법보다 더 좋은 성능을 보인다.

다중퍼셉트론을 이용한 자동차 번호판의 최적 입출력 노드의 비율 결정에 관한 연구 (Recognition of characters on car number plate and best recognition ratio among their layers using Multi-layer Perceptron)

  • 이의철;이왕헌
    • 한국전자통신학회논문지
    • /
    • 제11권1호
    • /
    • pp.73-80
    • /
    • 2016
  • 자동차 번호판 인식은 뺑소니차량의 추적이나 교통량의 측정, 교통사고의 조사 및 차량의 증가에 따른 차량범죄의 추적에 이용되고 있다. 실제 적용되는 교통 환경에서는 눈이나 비 그리고 주야간의 조명 변화에 따라서 입력되는 영상에 외란의 영향을 받기 쉬우며, 또한 영상을 촬영하는 순간의 차량의 직진방향과 카메라가 보는 방향에 따라서 동일한 번호판에 대해서도 기하학적으로 변형된 영상이 입력되게 된다. 본 연구에서는 이러한 카메라를 이용한 번호판 인식 환경의 문제를 해결하는 방법으로 호모그래피를 이용하여 기하학적으로 변형된 영상을 원래의 영상으로 변환하는 방법과 투영 히스토그램을 이용한 문자의 분리 방법을 제안하였다. 분리된 영상은 다중 퍼셉트론방법을 이용하여 문자와 숫자를 인식하였고 특히 최적한 입력, 은닉, 출력 층의 비율을 실험을 통하여 도출 하였다.

단층 퍼셉트론을 이용한 QPSK 신호의 검파 (A Detection for Signal using Single Layer Perceptron)

  • 조순계;최형기;김종교
    • 한국음향학회지
    • /
    • 제17권3호
    • /
    • pp.72-77
    • /
    • 1998
  • 이동통신에서는 송수신이 이루어지는 전파환경에 따라 직접파와 다중경로에 기인한 간접파에 의한 페이딩, 잡음, 간섭 등의 영향을 받게 된다. 이 논문에서는 복잡하고 다양한 유형의 수신신호 중 원하는 신호정보를 정확히 추출하기 위해 인공신경회로망 (ANN:Artivicial Neural Network)을 이용한다. 인공 신경회로망의 하나인 단층 퍼셉트론을 이용한 검파기를 제안하고, QPSK 변조방식을 이용하여 시뮬레이션을 행하고, 결과 분석을 통해 제안 시스템의 활용 가능성을 확인하다.

  • PDF

ESS 용량 산정을 위한 다층 퍼셉트론을 이용한 풍력 발전량 예측 (Prediction of Wind Power Generation for Calculation of ESS Capacity using Multi-Layer Perceptron)

  • 최정곤;최효상
    • 한국전자통신학회논문지
    • /
    • 제16권2호
    • /
    • pp.319-328
    • /
    • 2021
  • 본 논문에서는 풍력 발전 수익 극대화 및 비용 최소화를 위해 설치하는 ESS에 대하여 정확한 용량 산정을 하기 위한 목적으로 풍력 단지용 전력량 예측을 다층 퍼셉트론을 이용하여 수행한다. 풍력 발전량을 예측하기 위해 풍속, 풍향, 공기밀도를 변수로 하고 그 변수를 병합하고 정규화한다. 모델을 훈련시키기 위해 병합된 변수를 70% 대 30% 비율로 훈련 및 테스트 데이터로 나눈다. 그런 다음 학습 데이터를 사용하여 모델을 학습시키고 테스트 데이터를 사용하여 모델의 예측 성능도 평가한다. 마지막으로 풍력량 예측 결과를 제시한다.

유량과 수질을 연계한 실시간 인공지능 경보시스템 개발 (II) 경보시스템 구축 (A Development of Real Time Artificial Intelligence Warning System Linked Discharge and Water Quality (II) Construction of Warning System)

  • 연인성;안상진
    • 한국수자원학회논문집
    • /
    • 제38권7호
    • /
    • pp.575-584
    • /
    • 2005
  • 수질오염 사고를 판단하기위한 경보모형은 다중퍼셉트론과 다층신경망, 뉴로-퍼지 모형들로 구성되었으며, 개발된 기준축에 따른 안정, 주의, 경고 상태를 학습하였다. 수질예측 모형에 유출예측 모형을 연계하고 경보모형을 결합하여 인공지능 시스템을 구축하였으며, 구축된 시스템을 GUI로 구현하였다. GUI 화면은 초기화면, 자료 전처리 과정, 유량예측 과정, 수질예측 과정, 경보시스템의 순으로 진행된다. 수질오염 사고에 대한 시나리오를 작성하여 시스템의 적용성을 검토하였으며, 인공지능 경보시스템은 이상수질에 대하여 위험 및 안정 상태를 적합하게 구별하는 것으로 나타났다.

DS/SS 통신에서 BISP 알고리즘을 이용한 탭 가중치 갱신 (Tap-Weight Update Multilayer Neural Network using BISP Algorithm in DS/SS Communication)

  • 석경휴;김문환;임영진;김광준;배철수;나상동
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2003년도 춘계종합학술대회
    • /
    • pp.712-716
    • /
    • 2003
  • 본 논문은 신경망을 이용한 간섭 신호 제어로써 복합 다중 퍼셉트론에서 DS/SS 이동 통신에서의 수신된 신호들을 역전파 학습알고리즘을 이용하여 검출하는 것에 대하여 연구한다. 수신 신호가 일정한 비트율을 갖는 채널에 전송하기 위하여 신경망을 이용한 새로운 탭 가중치 갱신 제어 방법을 제안한다. 적응 횡단선 필터는 심볼간의 채널에 발생하는 상호 심볼간 간섭을 억압하기 위해 LMS 알고리즘 사용한다. 이 알고리즘은 원하는 응답과 실제 출력간의 차인 에러를 이용하여 탭 가중치 조절 메카니즘을 통해 탭 가중치를 갱신함으로서 효과적으로 간섭을 제거하였다. 본 논문은 상호 심볼간 간섭을 효율적으로 억압해온 기존의 LMS 알고리즘에 다계층 퍼셉트론 신경망을 조합한 새로운 BISP 알고리즘을 제안하였으며, 제안된 알고리즘을 통해 탭 가중치 갱신이 보다 효율적으로 이루어짐을 알 수 있다. 시뮬레이션 결과를 통해 제안된 알고리즘의 평균 자승 에러의 수렴 특성이 기존 LMS 알고리즘을 이용한 수렴특성보다 우월하다는 것을 나타내었다.

  • PDF

다중 에이전트 강화학습을 위한 SOM 기반의 일반화 (SOM_Based Generalization for Multiagent Reinforcement Learning)

  • 임문택;김인철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2002년도 춘계학술발표논문집 (상)
    • /
    • pp.565-568
    • /
    • 2002
  • 본 논문에서는 에이전트간의 통신이 불가능한 다중 에이전트 환경에서 각 에이전트들이 독립적이면서 대표적인 강화학습법인 Q-학습을 전개함으로써 서로 효과적으로 협조할 수 있는 행동전략을 학습하려고 한다. 하지만 단일 에이전트 경우에 비해 보다 큰 상태-행동공간을 갖는 다중 에이전트환경에서는 강화학습을 통해 효과적으로 최적의 행동 전략에 도달하기 어렵다는 문제점이 있다. 이 문제에 대한 기존의 접근방법은 크게 모듈화 방법과 일반화 방법이 제안되었으나 모두 나름의 제한을 가지고 있다. 본 논문에서는 대표적인 다중 에이전트 학습 문제의 예로서 the Prey and Hunters Problem를 소개하고 이 문제영역을 통해 이와 같은 강화학습의 문제점을 살펴보고, 해결책으로 신경망 SOM 을 이용한 일반화 방법을 제안한다. 이 방법은 다층 퍼셉트론 신경망과 역전파 알고리즘을 이용한 기존의 일반화 방법과는 달리 군집화 기능을 제공하는 신경망 SOM 을 이용함으로써 명확한 다수의 훈련 예가 없어도 효과적으로 채 경험하지 못한 상태-행동들에 대한 Q 값을 예측하고 이용할 수 있다는 장점이 있다.

  • PDF