Journal of the Korea Institute of Information and Communication Engineering
/
v.6
no.5
/
pp.777-782
/
2002
This study will offer multimodal recognition instead of an existing monomodal bioinfomatics by using facial multi-feature to improve the accuracy of recognition and to consider the convenience of user . Each bioinfomatics vector can be found by the following ways. For a face, the feature is calculated by principal component analysis with wavelet multiresolution. For a lip, a filter is used to find out an equation to calculate the edges of the lips first. Then by using a thinning image and least square method, an equation factor can be drawn. A feature found out the facial parameter distance ratio. We've sorted backpropagation neural network and experimented with the inputs used above. Based on the experimental results we discuss the advantage and efficiency.
Proceedings of the Korean Information Science Society Conference
/
2004.10b
/
pp.742-744
/
2004
본 논문은 복잡한 배경에서의 얼굴 검출에 있어서 다중 특징 추출 데이터로 학습한 계단식 분류기에 의한 방법을 제안한다 얼굴 검출에서 얼굴의 패턴은 상당히 다양한 영상 표현으로 나타나기 때문에 하나의 특징 추출 방법은 사람의 얼굴을 모델링 하기에는 부족하다. 따라서 여기서는 얼굴의 전체적인 지역적인 특징을 나타내는 Subregion과, 얼굴의 주파수 특성에 따라 좀 더 세밀하고 다양한 속성들을 나타내는 Haar 웨이블릿 변환을 이용하여 다중으로 특징을 추출하여 효과적인 모델링을 시도하였다. 특징을 추출한 얼굴과 비얼굴의 패턴(pattern)을 구분하기 위해서 패턴들의 통계적인 특성을 이용하여 각 추출방법에 맞게 학습된 Bayesian 분류기를 직렬로 연결하여 사용하였으며 비얼굴은 얼굴과 유사한 비얼굴(face-like nonface) 패턴들을 사용하여 모델링 하였다. 제안한 얼굴 검출 방식의 성능은 MIT-CMU 시험 영상들을 이용하여 평가하였다. 그 결과 한 가지 특징 추출을 사용하는 것 보다 두 가지 특징 추출을 병행한 계단식 구성이 더 정확한 검출 결과를 나타내었다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2007.04a
/
pp.103-106
/
2007
본 논문에서는 얼굴, 홍채 등의 생채정보를 안전하게 은닉하고 효과적으로 은닉정보를 추출할 수 있는 웨이블렛 기반 워터마킹 기법을 제안한다. 얼굴과 홍채의 특징데이터는 Fuzzy-LDA(Fuzzy-Based Linear Discriminant Analysis)를 이용하여 추출하였다. 워터마킹알고리즘은 Wavelet을 이용하여 생체이미지에 생체특징 삽입 이전의 생체 인식율과 워터마킹알고리즘을 거쳐 생체특징을 추출한 후의 인식률 비교를 통해 성능을 평가하였다. 또한 단일생체특징 삽입과 다중생체특징삽입을 통해 단일생체보안과 다중생체보안의 실험을 수행, 평가하였다.
Proceedings of the Korea Information Processing Society Conference
/
2004.11a
/
pp.43-46
/
2004
현재 병리 의사에 의해 주관적으로 이루어지고 있는 병리 영상의 진단에 도움을 주기 위해 병리영상에서 객관적으로 추출 가능한 정보를 이용하여 유방종양 검색 시스템을 개발하였다. 다중 특징을 이용한 내용 기반 검색 방법을 사용하였으며, 영상에서 자동으로 추출 가능한 다양한 특징을 검색의 파라미터로 이용하였다. 진단에 도움을 주기 위해 전체 영상 뿐만 아니라 관심 있는 영역의 부분영상도 추출하여 검색이 가능하게 설계하였으며 시스템의 평가를 위해 단일 특징을 이용하여 영상을 검색 하였을 때와 다중 특징을 이용하여 영상을 검색 하였을 때의 검색율을 비교하였다. 향후 이 시스템은 병리영상의 진단에 있어 객관적이고 높은 재현성을 가지게 하는 보조도구로 사용될 수 있을 것이다.
Proceedings of the Korea Information Processing Society Conference
/
2014.04a
/
pp.749-752
/
2014
본 논문에서는 저속으로 동작하는 구름 베어링의 다중 결함 조기 검출을 위해 결함 특징 추출, 효과적인 특징 선택, 선택된 특징을 이용한 결함 분류의 세 단계로 구성된 결함 진단 기법을 제안한다. 1단계에서 이산 웨이블릿 변환을 이용하여 미세성분으로부터 통계적 결함 특징을 추출하고, DET(distance evaluation technique)를 이용하여 추출한 결함 특징 가운데 베어링 다중 결함 검출에 효과적인 특징을 선택한다. 마지막으로 선택된 특징을 k-NN(k-Nearest Neighbors) 분류기 입력으로 사용함으로써 결함을 진단한다. 본 논문에서는 제안한 결함 진단 기법의 성능을 분류 정확도 측면에서 평가한 결과 95.14%의 높은 분류 정확도를 보였다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2002.05a
/
pp.448-451
/
2002
This study will offer multi-feature recognition instead of an using mono-feature to improve the accuracy of recognition. Each Feature can be found by following ways. For a face, the feature is calculated by the principal component analysis with wavelet multiresolution. For a lip, a filter is used to find out on equation to calculate the edges of the lips first. Then the other feature is calculated by the distance ratio of facial parameters. We've sorted backpropagation neural network and experimented with the inputs used above and then based on the experimental results we discuss the advantage and efficiency.
Yong-Uk Yoon;Gyu-Woong Han;Dong-Ha Kim;Jae-Gon Kim
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.11a
/
pp.10-13
/
2022
최근 인공지능 기술을 바탕으로 지능형 분석을 수행하는 기계를 위한 비디오 부호화 기술의 필요성이 요구되면서, MPEG 에서는 VCM(Video Coding for Machines) 표준화를 시작하였다. VCM 에서는 기계를 위한 비디오/이미지 압축 또는 비디오/이미지 특징 압축을 위한 다양한 방법이 제시되고 있다. 본 논문에서는 객체추적(object tracking)을 위한 머신비전(machine vision) 네트워크에서 추출되는 다중스케일(multi-scale) 특징의 효율적인 압축 기법을 제시한다. 제안기법은 다중스케일 특징을 단일스케일(single-scale) 특징으로 차원을 축소하여 형성된 특징 시퀀스를 최신 비디오 코덱 표준인 VVC(Versatile Video Coding)를 사용하여 압축한다. 제안기법은 VCM 에서 제시하는 기준(anchor) 대비 89.65%의 BD-rate 부호화 성능향상을 보인다.
Proceedings of the Korean Society of Computer Information Conference
/
2013.01a
/
pp.35-38
/
2013
최근, 대용량 영상 데이터베이스가 축적되면서 영상 인식과 영상 검색 분야가 주목받고 있으며, 다양한 디바이스에 따라 생성되는 영상의 해상도가 상이하게 나타나고 있다. 본 논문에서는 내용-기반 영상 검색을 위한 새로운 칼라 기술자를 제안한다. 제안 알고리즘에서는 공간 칼라 정보에 대한 웨이블릿 변환과 채널 및 변환 서브밴드에 따른 가중치를 적용하여 칼라 특징 벡터를 추출한다. 시뮬레이션을 통하여 제안하는 알고리즘의 검색 성능을 평가하였으며, 유사한 특징 벡터 크기를 기준으로, 기존의 MPEG-7 등의 칼라 검색 기술자보다 다중-해상도의 영상 데이터베이스에서 향상된 검색율을 보임을 확인하였다. 본 논문에서 제시한 알고리즘은 단일 특성의 특징 벡터를 추출하는 검색 기술자로써, 다중 특징으로 결합하기 위한 기본 기술자로 활용될 수 있다.
The Journal of Korean Institute of Communications and Information Sciences
/
v.26
no.4B
/
pp.491-504
/
2001
본 논문은 고정된 카메라를 통해 들어오는 도로연상에서 추적되는 다중 차량들의 겹침(occlusion)발생시 칼만 필터와 차량의 특징정보를 이용하여 개별 차량을 분할하고 추적 가능한 시스템을 제안하고 구현하였다. 다중 차량을 추적할 시 가장 큰 문제점이 되고 있는 차량 겹침을 해결하기 위해 카메라와의 거리를 이용하여 해결하는 방법 3D 모델을 이용하여 해결하는 방법, 겹침 추론 등 차량 겹침을 해결하기 위한 여러 가지 방법들이 제시되고 있다. 그러나 영상에 연속적으로 나타나는 다중 차량의 겹침을 단일 차량으로 인식할 수 는 단점이 있다. 따라서 칼만 필터와 차량의 특징 정보로서 차량의 높이와 넓이의 비, 추적에 사용되는 박스에서 차량과 여백의 비를 이용함으로서 연속적으로 나타날 수 있는 차량 겹침을 분할하고 추적 가능하게 하는 시스템을 구현하고 실험하였다. 본 시스템에서는 256X 256의 크기로 15 frames/sec로 저장된 AVI 파일 형식의 동영상을 사용하여 실험에 이용하였으며, 시내 도로에서의 차량들의 실험 결과 기존의 방법 보다 차량 특징 정보를 이용한 방법이 연속적 겹침에 대한 처리에 우수함을 보였다.
Journal of the Korean Institute of Telematics and Electronics B
/
v.33B
no.1
/
pp.187-194
/
1996
In this paper, we propose regression neural networks based on regression trees. We map regression trees into three layered feedforward networks. We put multi feature split functions in the first layer so that the networks have a better chance to get optimal partitions of input space. We suggest two supervised learning algorithms for the network training and test both in single feature split and multifeature split functions. In experiments, the proposed regression neural networks is proved to have the better learning performance than those of the single feature split regression trees and the single feature split regression networks. Furthermore, we shows that the proposed learning schemes have an effect to prune an over-grown tree without degrading the learning performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.