• Title/Summary/Keyword: 다중특징

Search Result 1,192, Processing Time 0.03 seconds

A study on the implementation of identification system using facial multi-modal (얼굴의 다중특징을 이용한 인증 시스템 구현)

  • 정택준;문용선
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.5
    • /
    • pp.777-782
    • /
    • 2002
  • This study will offer multimodal recognition instead of an existing monomodal bioinfomatics by using facial multi-feature to improve the accuracy of recognition and to consider the convenience of user . Each bioinfomatics vector can be found by the following ways. For a face, the feature is calculated by principal component analysis with wavelet multiresolution. For a lip, a filter is used to find out an equation to calculate the edges of the lips first. Then by using a thinning image and least square method, an equation factor can be drawn. A feature found out the facial parameter distance ratio. We've sorted backpropagation neural network and experimented with the inputs used above. Based on the experimental results we discuss the advantage and efficiency.

Multiple Feature Representation for Efficient Cascaded Face Detection (효과적인 계단식 얼굴 검출을 위한 다중 특징 추출)

  • 소형준;남미영;이필규
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.742-744
    • /
    • 2004
  • 본 논문은 복잡한 배경에서의 얼굴 검출에 있어서 다중 특징 추출 데이터로 학습한 계단식 분류기에 의한 방법을 제안한다 얼굴 검출에서 얼굴의 패턴은 상당히 다양한 영상 표현으로 나타나기 때문에 하나의 특징 추출 방법은 사람의 얼굴을 모델링 하기에는 부족하다. 따라서 여기서는 얼굴의 전체적인 지역적인 특징을 나타내는 Subregion과, 얼굴의 주파수 특성에 따라 좀 더 세밀하고 다양한 속성들을 나타내는 Haar 웨이블릿 변환을 이용하여 다중으로 특징을 추출하여 효과적인 모델링을 시도하였다. 특징을 추출한 얼굴과 비얼굴의 패턴(pattern)을 구분하기 위해서 패턴들의 통계적인 특성을 이용하여 각 추출방법에 맞게 학습된 Bayesian 분류기를 직렬로 연결하여 사용하였으며 비얼굴은 얼굴과 유사한 비얼굴(face-like nonface) 패턴들을 사용하여 모델링 하였다. 제안한 얼굴 검출 방식의 성능은 MIT-CMU 시험 영상들을 이용하여 평가하였다. 그 결과 한 가지 특징 추출을 사용하는 것 보다 두 가지 특징 추출을 병행한 계단식 구성이 더 정확한 검출 결과를 나타내었다.

  • PDF

Secure Hiding of Multimodal Biometric Information Using Watermarking Method (워터마킹 기법을 이용한 다중생체정보의 안전한 은닉)

  • Lee, Uk-Jae;Lee, Dae-Jong;Jeon, Myeong-Geun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.103-106
    • /
    • 2007
  • 본 논문에서는 얼굴, 홍채 등의 생채정보를 안전하게 은닉하고 효과적으로 은닉정보를 추출할 수 있는 웨이블렛 기반 워터마킹 기법을 제안한다. 얼굴과 홍채의 특징데이터는 Fuzzy-LDA(Fuzzy-Based Linear Discriminant Analysis)를 이용하여 추출하였다. 워터마킹알고리즘은 Wavelet을 이용하여 생체이미지에 생체특징 삽입 이전의 생체 인식율과 워터마킹알고리즘을 거쳐 생체특징을 추출한 후의 인식률 비교를 통해 성능을 평가하였다. 또한 단일생체특징 삽입과 다중생체특징삽입을 통해 단일생체보안과 다중생체보안의 실험을 수행, 평가하였다.

  • PDF

Development of Content Based Breast Tumor Image Retrieval System Using Multi Features (다중특징을 이용한 유방종양영상 내용기반검색 시스템 개발)

  • Kim Min-Kyoung;Choi Heong-Kook
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.11a
    • /
    • pp.43-46
    • /
    • 2004
  • 현재 병리 의사에 의해 주관적으로 이루어지고 있는 병리 영상의 진단에 도움을 주기 위해 병리영상에서 객관적으로 추출 가능한 정보를 이용하여 유방종양 검색 시스템을 개발하였다. 다중 특징을 이용한 내용 기반 검색 방법을 사용하였으며, 영상에서 자동으로 추출 가능한 다양한 특징을 검색의 파라미터로 이용하였다. 진단에 도움을 주기 위해 전체 영상 뿐만 아니라 관심 있는 영역의 부분영상도 추출하여 검색이 가능하게 설계하였으며 시스템의 평가를 위해 단일 특징을 이용하여 영상을 검색 하였을 때와 다중 특징을 이용하여 영상을 검색 하였을 때의 검색율을 비교하였다. 향후 이 시스템은 병리영상의 진단에 있어 객관적이고 높은 재현성을 가지게 하는 보조도구로 사용될 수 있을 것이다.

  • PDF

Early Multiple Fault Identification of Low-Speed Rolling Element Bearings (저속 구름 베어링의 다중 결함 조기 검출)

  • Kang, Hyunjun;Jeong, In-Kyu;Kang, Myeongsu;Kim, Jong-Myon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.04a
    • /
    • pp.749-752
    • /
    • 2014
  • 본 논문에서는 저속으로 동작하는 구름 베어링의 다중 결함 조기 검출을 위해 결함 특징 추출, 효과적인 특징 선택, 선택된 특징을 이용한 결함 분류의 세 단계로 구성된 결함 진단 기법을 제안한다. 1단계에서 이산 웨이블릿 변환을 이용하여 미세성분으로부터 통계적 결함 특징을 추출하고, DET(distance evaluation technique)를 이용하여 추출한 결함 특징 가운데 베어링 다중 결함 검출에 효과적인 특징을 선택한다. 마지막으로 선택된 특징을 k-NN(k-Nearest Neighbors) 분류기 입력으로 사용함으로써 결함을 진단한다. 본 논문에서는 제안한 결함 진단 기법의 성능을 분류 정확도 측면에서 평가한 결과 95.14%의 높은 분류 정확도를 보였다.

A study on the implementation of identification system using facial multi-feature (얼굴의 다중특징을 이용한 인증 시스템 구현)

  • 정택준;문용선;박병석
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.448-451
    • /
    • 2002
  • This study will offer multi-feature recognition instead of an using mono-feature to improve the accuracy of recognition. Each Feature can be found by following ways. For a face, the feature is calculated by the principal component analysis with wavelet multiresolution. For a lip, a filter is used to find out on equation to calculate the edges of the lips first. Then the other feature is calculated by the distance ratio of facial parameters. We've sorted backpropagation neural network and experimented with the inputs used above and then based on the experimental results we discuss the advantage and efficiency.

  • PDF

A Method of Multi-Scale Feature Compression for Object Tracking in VCM (VCM 의 객체추적을 위한 다중스케일 특징 압축 기법)

  • Yong-Uk Yoon;Gyu-Woong Han;Dong-Ha Kim;Jae-Gon Kim
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.10-13
    • /
    • 2022
  • 최근 인공지능 기술을 바탕으로 지능형 분석을 수행하는 기계를 위한 비디오 부호화 기술의 필요성이 요구되면서, MPEG 에서는 VCM(Video Coding for Machines) 표준화를 시작하였다. VCM 에서는 기계를 위한 비디오/이미지 압축 또는 비디오/이미지 특징 압축을 위한 다양한 방법이 제시되고 있다. 본 논문에서는 객체추적(object tracking)을 위한 머신비전(machine vision) 네트워크에서 추출되는 다중스케일(multi-scale) 특징의 효율적인 압축 기법을 제시한다. 제안기법은 다중스케일 특징을 단일스케일(single-scale) 특징으로 차원을 축소하여 형성된 특징 시퀀스를 최신 비디오 코덱 표준인 VVC(Versatile Video Coding)를 사용하여 압축한다. 제안기법은 VCM 에서 제시하는 기준(anchor) 대비 89.65%의 BD-rate 부호화 성능향상을 보인다.

  • PDF

Modelling of Efficient Color Image Descriptor for Multi-resolution Database (다중-해상도 데이터베이스를 위한 효율적인 칼라 영상 기술자의 모델링)

  • Lee, Yong-Hwan;Ahn, Hyochang;Cho, Hanjin;Lee, June-Hwan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2013.01a
    • /
    • pp.35-38
    • /
    • 2013
  • 최근, 대용량 영상 데이터베이스가 축적되면서 영상 인식과 영상 검색 분야가 주목받고 있으며, 다양한 디바이스에 따라 생성되는 영상의 해상도가 상이하게 나타나고 있다. 본 논문에서는 내용-기반 영상 검색을 위한 새로운 칼라 기술자를 제안한다. 제안 알고리즘에서는 공간 칼라 정보에 대한 웨이블릿 변환과 채널 및 변환 서브밴드에 따른 가중치를 적용하여 칼라 특징 벡터를 추출한다. 시뮬레이션을 통하여 제안하는 알고리즘의 검색 성능을 평가하였으며, 유사한 특징 벡터 크기를 기준으로, 기존의 MPEG-7 등의 칼라 검색 기술자보다 다중-해상도의 영상 데이터베이스에서 향상된 검색율을 보임을 확인하였다. 본 논문에서 제시한 알고리즘은 단일 특성의 특징 벡터를 추출하는 검색 기술자로써, 다중 특징으로 결합하기 위한 기본 기술자로 활용될 수 있다.

  • PDF

A Study on tracking of multiple vehicle occlusions in road images using Kalman filter and vehicle feature information (칼만 필터와 차량 특징 정보를 이용한 중첩된 다중 차량 추적에 관한 연구)

  • 강은구;김성동;최기호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.4B
    • /
    • pp.491-504
    • /
    • 2001
  • 본 논문은 고정된 카메라를 통해 들어오는 도로연상에서 추적되는 다중 차량들의 겹침(occlusion)발생시 칼만 필터와 차량의 특징정보를 이용하여 개별 차량을 분할하고 추적 가능한 시스템을 제안하고 구현하였다. 다중 차량을 추적할 시 가장 큰 문제점이 되고 있는 차량 겹침을 해결하기 위해 카메라와의 거리를 이용하여 해결하는 방법 3D 모델을 이용하여 해결하는 방법, 겹침 추론 등 차량 겹침을 해결하기 위한 여러 가지 방법들이 제시되고 있다. 그러나 영상에 연속적으로 나타나는 다중 차량의 겹침을 단일 차량으로 인식할 수 는 단점이 있다. 따라서 칼만 필터와 차량의 특징 정보로서 차량의 높이와 넓이의 비, 추적에 사용되는 박스에서 차량과 여백의 비를 이용함으로서 연속적으로 나타날 수 있는 차량 겹침을 분할하고 추적 가능하게 하는 시스템을 구현하고 실험하였다. 본 시스템에서는 256X 256의 크기로 15 frames/sec로 저장된 AVI 파일 형식의 동영상을 사용하여 실험에 이용하였으며, 시내 도로에서의 차량들의 실험 결과 기존의 방법 보다 차량 특징 정보를 이용한 방법이 연속적 겹침에 대한 처리에 우수함을 보였다.

  • PDF

Regression Neural Networks for Improving the Learning Performance of Single Feature Split Regression Trees (단일특징 분할 회귀트리의 학습성능 개선을 위한 회귀신경망)

  • Lim, Sook;Kim, Sung-Chun
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.1
    • /
    • pp.187-194
    • /
    • 1996
  • In this paper, we propose regression neural networks based on regression trees. We map regression trees into three layered feedforward networks. We put multi feature split functions in the first layer so that the networks have a better chance to get optimal partitions of input space. We suggest two supervised learning algorithms for the network training and test both in single feature split and multifeature split functions. In experiments, the proposed regression neural networks is proved to have the better learning performance than those of the single feature split regression trees and the single feature split regression networks. Furthermore, we shows that the proposed learning schemes have an effect to prune an over-grown tree without degrading the learning performance.

  • PDF