• Title/Summary/Keyword: 다중키워드

Search Result 50, Processing Time 0.029 seconds

Medical Image Automatic Annotation Using Multi-class SVM and Annotation Code Array (다중 클래스 SVM과 주석 코드 배열을 이용한 의료 영상 자동 주석 생성)

  • Park, Ki-Hee;Ko, Byoung-Chul;Nam, Jae-Yeal
    • The KIPS Transactions:PartB
    • /
    • v.16B no.4
    • /
    • pp.281-288
    • /
    • 2009
  • This paper proposes a novel algorithm for the efficient classification and annotation of medical images, especially X-ray images. Since X-ray images have a bright foreground against a dark background, we need to extract the different visual descriptors compare with general nature images. In this paper, a Color Structure Descriptor (CSD) based on Harris Corner Detector is only extracted from salient points, and an Edge Histogram Descriptor (EHD) used for a textual feature of image. These two feature vectors are then applied to a multi-class Support Vector Machine (SVM), respectively, to classify images into one of 20 categories. Finally, an image has the Annotation Code Array based on the pre-defined hierarchical relations of categories and priority code order, which is given the several optimal keywords by the Annotation Code Array. Our experiments show that our annotation results have better annotation performance when compared to other method.

C-Chord: The DHT-based P2P System for the Categorized Search (C-Chord: 분류 검색을 위한 DHT 기반의 P2P 시스템)

  • Kim Sam-Young;Park Jae-Hyun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07a
    • /
    • pp.343-345
    • /
    • 2005
  • P2P 시스템들의 주요한 이슈는 효율적인 검색 기법에 있다. 기존의 DHT(distributed hash table) 방식의 P2P 시스템들은 단순 쿼리에 이용되는 단일 키워드 일치를 통한 검색 기법에만 머물렀다. 본 논문에서는 이러한 단순 쿼리 기반의 검색 기법을 개선하기 위해 DHT 기반의 도큐먼트 라우팅 모델에서 다중 링 토폴로지를 이용한 분류 탐색 기법을 제안한다. 제안된 기법은 Chord[1] 프로토콜을 기반으로 구현하였으며, 분류 검색의 지원 이후에도 로드 밸런싱에 있어 기존 시스템과 유사한 성능을 보임을 확인한다.

  • PDF

Protecting Multi Ranked Searchable Encryption in Cloud Computing from Honest-but-Curious Trapdoor Generating Center (트랩도어 센터로부터 보호받는 순위 검색 가능한 암호화 다중 지원 클라우드 컴퓨팅 보안 모델)

  • YeEun Kim;Heekuck Oh
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.6
    • /
    • pp.1077-1086
    • /
    • 2023
  • The searchable encryption model allows to selectively search for encrypted data stored on a remote server. In a real-world scenarios, the model must be able to support multiple search keywords, multiple data owners/users. In this paper, these models are referred to as Multi Ranked Searchable Encryption model. However, at the time this paper was written, the proposed models use fully-trusted trapdoor centers, some of which assume that the connection between the user and the trapdoor center is secure, which is unlikely that such assumptions will be kept in real life. In order to improve the practicality and security of these searchable encryption models, this paper proposes a new Multi Ranked Searchable Encryption model which uses random keywords to protect search words requested by the data downloader from an honest-but-curious trapdoor center with an external attacker without the assumptions. The attacker cannot distinguish whether two different search requests contain the same search keywords. In addition, experiments demonstrate that the proposed model achieves reasonable performance, even considering the overhead caused by adding this protection process.

Natural Language based Video Retrieval System with Event Analysis of Multi-camera Image Sequence in Office Environment (사무실 환경 내 다중카메라 영상의 이벤트분석을 통한 자연어 기반 동영상 검색시스템)

  • Lim, Soo-Jung;Hong, Jin-Hyuk;Cho, Sung-Bae
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.384-389
    • /
    • 2008
  • Recently, the necessity of systems which effectively store and retrieve video data has increased. Conventional video retrieval systems retrieve data using menus or text based keywords. Due to the lack of information, many video clips are simultaneously searched, and the user must have a certain level of knowledge to utilize the system. In this paper, we suggest a natural language based conversational video retrieval system that reflects users' intentions and includes more information than keyword based queries. This system can also retrieve from events or people to their movements. First, an event database is constructed based on meta-data which are generated by domain analysis for collected video in an office environment. Then, a script database is also constructed based on the query pre-processing and analysis. From that, a method to retrieve a video through a matching technique between natural language queries and answers is suggested and validated through performance and process evaluation for 10 users The natural language based retrieval system has shown its better efficiency in performance and user satisfaction than the menu based retrieval system.

  • PDF

Analysis of the Relations between Social Issues and Prices Using Text Mining - Avian Influenza and Egg Prices - (뉴스기사 분석을 통한 사회이슈와 가격에 관한 연구 - 조류인플루엔자와 달걀가격 중심으로 -)

  • Han, Mu Moung Cho;Kim, Yangsok;Lee, Choong Kwon
    • Smart Media Journal
    • /
    • v.7 no.1
    • /
    • pp.45-51
    • /
    • 2018
  • Avian influenza (AI) is notorious for its rapid infection rate, and has a serious impact on consumers and producers alike, especially in poultry farms. The AI outbreak, which occurred nationwide at the end of 2016, devastated the livestock farming industries. As a result, the prices of eggs and egg products had skyrocketed, and the event was reported by the media with heavy emphasis. The purpose of this study was to investigate the correlation between the egg price fluctuation and the keyword changes in online news articles reflecting social issues. To this end, we analyzed 682 cases of AI-related online news articles for fourteen weeks from November 2016 in South Korea. The results of this study are expected to contribute to understanding the relationship between the actual price of eggs and the keywords from news articles related to social issues.

Investigating the Impact of Corporate Social Responsibility on Firm's Short- and Long-Term Performance with Online Text Analytics (온라인 텍스트 분석을 통해 추정한 기업의 사회적책임 성과가 기업의 단기적 장기적 성과에 미치는 영향 분석)

  • Lee, Heesung;Jin, Yunseon;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.2
    • /
    • pp.13-31
    • /
    • 2016
  • Despite expectations of short- or long-term positive effects of corporate social responsibility (CSR) on firm performance, the results of existing research into this relationship are inconsistent partly due to lack of clarity about subordinate CSR concepts. In this study, keywords related to CSR concepts are extracted from atypical sources, such as newspapers, using text mining techniques to examine the relationship between CSR and firm performance. The analysis is based on data from the New York Times, a major news publication, and Google Scholar. We used text analytics to process unstructured data collected from open online documents to explore the effects of CSR on short- and long-term firm performance. The results suggest that the CSR index computed using the proposed text - online media - analytics predicts long-term performance very well compared to short-term performance in the absence of any internal firm reports or CSR institute reports. Our study demonstrates the text analytics are useful for evaluating CSR performance with respect to convenience and cost effectiveness.

Multi-class Support Vector Machines Model Based Clustering for Hierarchical Document Categorization in Big Data Environment (빅 데이터 환경에서 계층적 문서 유형 분류를 위한 클러스터링 기반 다중 SVM 모델)

  • Kim, Young Soo;Lee, Byoung Yup
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.11
    • /
    • pp.600-608
    • /
    • 2017
  • Recently data growth rates are growing exponentially according to the rapid expansion of internet. Since users need some of all the information, they carry a heavy workload for examination and discovery of the necessary contents. Therefore information retrieval must provide hierarchical class information and the priority of examination through the evaluation of similarity on query and documents. In this paper we propose an Multi-class support vector machines model based clustering for hierarchical document categorization that make semantic search possible considering the word co-occurrence measures. A combination of hierarchical document categorization and SVM classifier gives high performance for analytical classification of web documents that increase exponentially according to extension of document hierarchy. More information retrieval systems are expected to use our proposed model in their developments and can perform a accurate and rapid information retrieval service.

Big Data Management Scheme using Property Information based on Cluster Group in adopt to Hadoop Environment (하둡 환경에 적합한 클러스터 그룹 기반 속성 정보를 이용한 빅 데이터 관리 기법)

  • Han, Kun-Hee;Jeong, Yoon-Su
    • Journal of Digital Convergence
    • /
    • v.13 no.9
    • /
    • pp.235-242
    • /
    • 2015
  • Social network technology has been increasing interest in the big data service and development. However, the data stored in the distributed server and not on the central server technology is easy enough to find and extract. In this paper, we propose a big data management techniques to minimize the processing time of information you want from the content server and the management server that provides big data services. The proposed method is to link the in-group data, classified data and groups according to the type, feature, characteristic of big data and the attribute information applied to a hash chain. Further, the data generated to extract the stored data in the distributed server to record time for improving the data index information processing speed of the data classification of the multi-attribute information imparted to the data. As experimental result, The average seek time of the data through the number of cluster groups was increased an average of 14.6% and the data processing time through the number of keywords was reduced an average of 13%.

Label Embedding for Improving Classification Accuracy UsingAutoEncoderwithSkip-Connections (다중 레이블 분류의 정확도 향상을 위한 스킵 연결 오토인코더 기반 레이블 임베딩 방법론)

  • Kim, Museong;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.175-197
    • /
    • 2021
  • Recently, with the development of deep learning technology, research on unstructured data analysis is being actively conducted, and it is showing remarkable results in various fields such as classification, summary, and generation. Among various text analysis fields, text classification is the most widely used technology in academia and industry. Text classification includes binary class classification with one label among two classes, multi-class classification with one label among several classes, and multi-label classification with multiple labels among several classes. In particular, multi-label classification requires a different training method from binary class classification and multi-class classification because of the characteristic of having multiple labels. In addition, since the number of labels to be predicted increases as the number of labels and classes increases, there is a limitation in that performance improvement is difficult due to an increase in prediction difficulty. To overcome these limitations, (i) compressing the initially given high-dimensional label space into a low-dimensional latent label space, (ii) after performing training to predict the compressed label, (iii) restoring the predicted label to the high-dimensional original label space, research on label embedding is being actively conducted. Typical label embedding techniques include Principal Label Space Transformation (PLST), Multi-Label Classification via Boolean Matrix Decomposition (MLC-BMaD), and Bayesian Multi-Label Compressed Sensing (BML-CS). However, since these techniques consider only the linear relationship between labels or compress the labels by random transformation, it is difficult to understand the non-linear relationship between labels, so there is a limitation in that it is not possible to create a latent label space sufficiently containing the information of the original label. Recently, there have been increasing attempts to improve performance by applying deep learning technology to label embedding. Label embedding using an autoencoder, a deep learning model that is effective for data compression and restoration, is representative. However, the traditional autoencoder-based label embedding has a limitation in that a large amount of information loss occurs when compressing a high-dimensional label space having a myriad of classes into a low-dimensional latent label space. This can be found in the gradient loss problem that occurs in the backpropagation process of learning. To solve this problem, skip connection was devised, and by adding the input of the layer to the output to prevent gradient loss during backpropagation, efficient learning is possible even when the layer is deep. Skip connection is mainly used for image feature extraction in convolutional neural networks, but studies using skip connection in autoencoder or label embedding process are still lacking. Therefore, in this study, we propose an autoencoder-based label embedding methodology in which skip connections are added to each of the encoder and decoder to form a low-dimensional latent label space that reflects the information of the high-dimensional label space well. In addition, the proposed methodology was applied to actual paper keywords to derive the high-dimensional keyword label space and the low-dimensional latent label space. Using this, we conducted an experiment to predict the compressed keyword vector existing in the latent label space from the paper abstract and to evaluate the multi-label classification by restoring the predicted keyword vector back to the original label space. As a result, the accuracy, precision, recall, and F1 score used as performance indicators showed far superior performance in multi-label classification based on the proposed methodology compared to traditional multi-label classification methods. This can be seen that the low-dimensional latent label space derived through the proposed methodology well reflected the information of the high-dimensional label space, which ultimately led to the improvement of the performance of the multi-label classification itself. In addition, the utility of the proposed methodology was identified by comparing the performance of the proposed methodology according to the domain characteristics and the number of dimensions of the latent label space.

Development of Yóukè Mining System with Yóukè's Travel Demand and Insight Based on Web Search Traffic Information (웹검색 트래픽 정보를 활용한 유커 인바운드 여행 수요 예측 모형 및 유커마이닝 시스템 개발)

  • Choi, Youji;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.155-175
    • /
    • 2017
  • As social data become into the spotlight, mainstream web search engines provide data indicate how many people searched specific keyword: Web Search Traffic data. Web search traffic information is collection of each crowd that search for specific keyword. In a various area, web search traffic can be used as one of useful variables that represent the attention of common users on specific interests. A lot of studies uses web search traffic data to nowcast or forecast social phenomenon such as epidemic prediction, consumer pattern analysis, product life cycle, financial invest modeling and so on. Also web search traffic data have begun to be applied to predict tourist inbound. Proper demand prediction is needed because tourism is high value-added industry as increasing employment and foreign exchange. Among those tourists, especially Chinese tourists: Youke is continuously growing nowadays, Youke has been largest tourist inbound of Korea tourism for many years and tourism profits per one Youke as well. It is important that research into proper demand prediction approaches of Youke in both public and private sector. Accurate tourism demands prediction is important to efficient decision making in a limited resource. This study suggests improved model that reflects latest issue of society by presented the attention from group of individual. Trip abroad is generally high-involvement activity so that potential tourists likely deep into searching for information about their own trip. Web search traffic data presents tourists' attention in the process of preparation their journey instantaneous and dynamic way. So that this study attempted select key words that potential Chinese tourists likely searched out internet. Baidu-Chinese biggest web search engine that share over 80%- provides users with accessing to web search traffic data. Qualitative interview with potential tourists helps us to understand the information search behavior before a trip and identify the keywords for this study. Selected key words of web search traffic are categorized by how much directly related to "Korean Tourism" in a three levels. Classifying categories helps to find out which keyword can explain Youke inbound demands from close one to far one as distance of category. Web search traffic data of each key words gathered by web crawler developed to crawling web search data onto Baidu Index. Using automatically gathered variable data, linear model is designed by multiple regression analysis for suitable for operational application of decision and policy making because of easiness to explanation about variables' effective relationship. After regression linear models have composed, comparing with model composed traditional variables and model additional input web search traffic data variables to traditional model has conducted by significance and R squared. after comparing performance of models, final model is composed. Final regression model has improved explanation and advantage of real-time immediacy and convenience than traditional model. Furthermore, this study demonstrates system intuitively visualized to general use -Youke Mining solution has several functions of tourist decision making including embed final regression model. Youke Mining solution has algorithm based on data science and well-designed simple interface. In the end this research suggests three significant meanings on theoretical, practical and political aspects. Theoretically, Youke Mining system and the model in this research are the first step on the Youke inbound prediction using interactive and instant variable: web search traffic information represents tourists' attention while prepare their trip. Baidu web search traffic data has more than 80% of web search engine market. Practically, Baidu data could represent attention of the potential tourists who prepare their own tour as real-time. Finally, in political way, designed Chinese tourist demands prediction model based on web search traffic can be used to tourism decision making for efficient managing of resource and optimizing opportunity for successful policy.