• Title/Summary/Keyword: 다중채혈 이중 지수 법

Search Result 2, Processing Time 0.019 seconds

Determination of Appropriate Sampling Frequency and Time of Multiple Blood Sampling Dual Exponential Method with $^{99m}Tc$-DTPA for Calculating GFR (사구체여과율 계산을 위한 $^{99m}Tc$-DTPA를 이용한 다중 채혈 이중지수법의 적정 채혈 횟수 및 시간의 선정)

  • Kim, Chung-Ho;O, Joo-Hyun;Chung, Yong-An;Yoo, Ie-Ryung;Sohn, Hyung-Sun;Kim, Sung-Hoon;Chung, Soo-Kyo;Lee, Hyoung-Koo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.1
    • /
    • pp.33-39
    • /
    • 2006
  • Purpose: To determine appropriate sampling frequency and time of multiple blood sampling dual exponential method with $^{99m}Tc$-DTPA for calculating glomerular filtration rate (GFR). Materials & Methods: Thirty four patients were included in this study. Three mCi of $^{99m}Tc$-DTPA was intravenously injected and blood sampling at 9 different times, 5ml each, were done. Using the radioactivity of serum, measured by gamma counter, the GFR was calculated using dual exponential method and corrected with the body surface area. Using spontaneously chosen 2 data points of serum radioactivity, 15 collections of 2-sample GFR were calculated. And 10 collections of 3-sample GFR and 12 collections of 4-sample GFR were also calculated. Using the 9-sample GFR as a reference value, degree of agreement was analyzed with Kendall's $\tau$ correlation coefficients, mean difference and standard deviation. Results: Although some of the 2-sample GFR showed high correlation coefficient, over or underestimation had evolved as the renal function change. The 10-120-240 min 3-sample GFR showed a high correlation coefficient (${\tau}=0.93$), minimal difference ($Mean{\pm}SD=-1.784{\pm}3.972$), and no over or underestimation as the renal function changed. The 4-sample GFR showed no better accuracy than the 3-sample GFR. Conclusions: In the wide spectrum of renal function, the 10-120-240 min 3-sample GFC could be the best choice for estimating the patients' renal function.

Evaluation of Validity Glomerular Filtration Rate Measured by Gates Method according Region of Interest (관심 영역 설정에 따른 Gates법 토리여과율의 유효성 평가)

  • Su-Young Park;Sung-Min Ahn
    • Journal of radiological science and technology
    • /
    • v.46 no.5
    • /
    • pp.417-425
    • /
    • 2023
  • The glomerular filtration rate (GFR) has been the subject of much research as a key indicator for diagnosing, treating, and monitoring kidney function. The gamma camera method (Gates method) is simple and allows simultaneous acquisition of GFR and renal scintigraphy for each kidney, however its accuracy is inferior. This study aimed to investigate changes in GFR depending on how region of interest (ROI) are set up, which is one of many factors influencing accuracy. GFR was calculated by setting the ROI for each phase of the image acquisition time (Gates-1: 0~1 minutes, Gates-2: 1~3 minutes, Gates-3: 3~27 minutes), and statistical significance was verified based on probability value 0.05 through ANOVA analysis. While there was no statistically significant difference among results from Gates-1, 2, 3 (p=0.481>0.05), overall results from the Gates method tended to overestimate compared to those from the multiple blood sampling-dual exponential (MBSDE) method. When comparing averages between phases, results from Gates-2 were most similar to those from the MBSDE method. Moreover, paired t-test p-values between MBSDE method and phases were as follows Gates-1: 0.021 (p<0.05), Gates-2: 0.280 (p>0.05), and Gates-3: 0.164 (p>0.05) indicating that only Gates-1 had statistically significant differences compared with MBSDE method. Thus, setting ROI around 2~3 minutes is calculated can aid in accurately determining GFR when Gates Method.