본 연구에서는 방화발생에 영향을 미치는 요인을 도출하기 위하여 발생건수를 종속변수로 하고 경제 인구 사회적 요인을 독립변수로 하는 다중회귀분석을 실시하였다. 다중회귀분석은 선형함수, 준로그함수, 역준로그함수, 이중로그함수 4가지 함수형태에 대해 적용하였으며, 각 단계별로 변수의 선택과 제외를 고려하는 단계적선택 방식을 적용하였다. 다중공선성 문제와 자기상관 문제를 해결하기 위하여 분산확대지수(VIF)와 Durbin-Watson 계수 이용하였으며, 4가지 함수모형에 대하여 수정된 R 제곱(설명력) 값이 0.935 (93.5%)로 가장 값이 높고 통계적으로 유의한 선형함수모형을 최적의 모형으로 결정하고 모형에 대한 해석을 진행하였다. 선형함수모형 결과 방화발생에 영향을 미치는 요인은 범죄발생건수(0.829), 일반이혼율(0.151), 재정자주도(0.149), 소비자물가상승률(0.099) 순으로 도출되었다.
Environmental problems caused by GHG emitted by various industries are emerging around the world, and accordingly, relevant regulations are being applied by countries around the world. Korea is operating a carbon credit system that trades GHG in industry for money, which is expected to be applied to the construction industry. In addition, construction equipment using fossil fuels accounts for the largest portion of $CO_2$ emissions in the construction industry, and the importance of $CO_2$ reduction and prediction is increasing. However, there is a lack of data on the directly measured $CO_2$ emissions of construction equipment and there is no accurate methodology for measuring methods. Therefore, in this study, independent variables were derived based on the $CO_2$ emission data. In addition, multiple linear regression is performed for each independent variable to derive a predictive model of carbon dioxide emission by work type of construction equipment. It is expected that the construction process plan based on environmental factors in the construction industry can be established in the future.
한반도 서, 남해안 해성점토에 대하여 초기간극비와 자연함수비 및 액성한계의 물리적 특성과 압축지수와의 상관성을 규명하기 위해 비교적 신뢰성이 크다고 볼 수 있는 대형 항만 공사용 최근자료를 분석하였다. 시료교란의 정도를 분석하기 위하여 각 표본별 실내압밀시험을 실시하고 Schmertmann이 제안한 방법으로 보정하여 수정압축지수를 산정하였다. 또한 이들 자료를 토대로 실내압밀시험으로부터 얻어진 압축지수를 경험적 방법에 의하여 보정한 후 현장 처녀압축곡선과의 관계를 분석하고, 단순회귀분석, 다중회귀분석 및 비선형 회귀분석을 실시하여 최적의 회귀모델을 구한 후 해성점토에 적용할 수 있는 토질특성과 시료교란의 영향을 고려한 압축지수와의 상관 관계식을 제안하였다. 분석 결과, 시료교란의 영향을 경험적 방법으로 평가해 본 결과 현장 압축지수는 실험실 압축지수의 1.16배정도 크게 평가되었다. 해성점토의 물리적 특성과 압축지수의 상관성에 대한 최적의 회귀모형은 토질정수의 누승식 또는 지수승식 형태의 비선형회귀식이 가장 적합한 것으로 나타났다. 또한, 설계 및 실무에 보다 쉽게 적용할 수 있도록 하기 위하여 선형관계식을 사용하는 경우에는 압축지수의 상관식을 물성치의 구간에 따라 구분하여 사용하는 것이 바람직하다.
본 연구에서는 서울지역의 지상 미세먼지($PM_{2.5}$) 농도를 산출하기 위하여 경험적인 모델들을 개발하였다. 연구에 이용한 자료는 2012년 1월 1일부터 2013년 12월 31일까지이며 Terra와 Aqua위성의 MODIS센서에서 산출되는 에어로졸 광학두께, 옹스트롬 지수, 기상변수들과 행성경계층두께와 관련된 6개의 다중 선형 회귀모델들의 차이를 분석하였다. 그 결과 에어로졸 광학두께와 옹스트롬 지수, 상대습도, 풍속, 풍향, 행성경계층두께, 기온 자료를 입력 자료로 사용한 $M_6$모델이 가장 좋은 결과를 보였다. 통계적인 분석에 따르면 $M_6$ 모델을 사용하여 계산된 $PM_{2.5}$와 관측된 $PM_{2.5}$농도 사이의 결과는 상관계수(R=0.62)와 평균제곱근오차($RMSE=10.70{\mu}gm^{-3}$)이다. 또한 산출된 계절별 지표면 $PM_{2.5}$농도는 여름철(R=0.38)과 겨울철(R=0.56)보다 봄(R=0.66)과 가을철(R=0.75)에 상대적으로 더 좋은 상관 관계를 보였다. 이러한 결과는 에어로졸 광학두께의 계절별 관측 특성으로 인한 것으로써 다른 계절에 비하여 여름과 겨울철 에어로졸 광학두께 관측이 구름과 눈/얼음 표면에 의한 관측 제한과 오차를 가져온 것으로 분석되었다. 따라서 본 연구에서 사용한 경험적 다중선형회귀 모델은 위성에서 산출된 에어로졸 광학두께 자료가 지배적인 변수로 작용하며 $PM_{2.5}$산출 결과들을 향상시키기 위해서는 추가적인 기상 변수를 이용해야 할 것이다. 또한 경험적 다중선형회귀 모델을 이용하여 $PM_{2.5}$를 산출한 결과는 인공위성 자료로부터 대기환경 감시를 가능하게 하는 방법이 될 수 있어 유용할 것이다.
나주지역에서 '신고' 배나무의 만개일 및 생육기 기상이 수확일에 미치는 영향을 분석하고 과실 생육일수를 추정할 수 있는 다중 직선회귀 모델을 도출하였다. 만개일이 빠른 해일수록 수확일이 빨라지는 경향이었지만 과실 생육일수는 길어지는 경향이었다. 과실 생육기의 $0^{\circ}C$ 기준 일평균기온과 일최고기온의 생육온도일수와 변이계수는 3,565와 2.9% 및 4,463과 2.5%로 해에 따른 편차가 적었다. 과실 생육일수와 생육기의 월별 일평균기온 및 일최고기온의 생육온도 일수와는 관련성이 낮았지만, 만개후 생육일수별 기상요인과는 관련성이 높게 나왔다. 특히 만개후 1-60일과 31-60일까지의 일평균기온 및 일최고기온의 생육온도 일수와는 높은 부(-)의 상관을 나타내었다. 만개일과 만개 후 1일부터 60일까지의 일평균기온 및 일최고기온의 생육온도 일수를 독립변수로 하여 과실 생육일수를 추정하는 다중 선형회귀식으로 0.7212의 높은 결정계수 값을 얻었다. 따라서 나주지역에서 배 '신고'의 과실 생육일수를 다중 직선회귀 모델식에 의해 72%의 정확도로 추정할 수 있다.
프로스포츠 선수들의 연봉은 선수들의 개인 성적과 팀에 대한 기여도 등으로 결정된다는 가정하에 프로농구와 프로야구 선수들의 전년도 성적으로 다음해 연봉을 예측 분석하였다. 분석에 있어서 data visualization 기법을 통해 변수사이의 관계, 이상점 발견, 모형진단등을 하였다. 다중선형회귀 모형(Multiple Linear Regression)과 트리모형(Regression Tree)을 이용해서 자료를 분석하고 모델간 비교를 했으며, Cross-Validation을 이용해서 최적모델을 선택하였다. 특히, 자동으로 변수선택을 하는 stepwise regression방법을 그냥 사용하기보다는 먼저 설명변수들 사이의 관계나 설명변수와 반응변수 사이의 관계등을 조사하고 나서 이를 통해 선택된 변수들을 가지고 stepwise regression과 regression tree 방법론을 이용해서 적절한 변수 및 최종 모형을 선택하였다. 분석결과, 프로농구의 경우에는 경기당 득점, 어시스트, 자유투 성공수, 경력 등이 중요한 변수였고, 프로야구 투수의 경우에는 경력, 9이닝 당 삼진 수, 방어율, 피홈런 수 등이 중요한 변수였고, 프로야구 타자의 경우에는 경력, 안타 수, FA(자유계약)유무 여부 등이 중요한 변수였다.
태양광 발전은 일사량만 있으면 전기에너지를 얻을 수 있기 때문에, 새로운 에너지 공급원으로 용도가 급증하고 있다. 본 논문은 실제 태양광 발전 시스템의 컨버터 출력을 이용하여 장단기 출력 예측을 하였다. 예측 알고리즘은 다중선형회귀와 머신러닝의 지도학습 중 분류모델인 서포트 벡터 머신 그리고 DNN과 LSTM 등 딥러닝을 이용하였다. 또한 기상요소의 입출력 구조에 따라 3개의 모델을 이용하였다. 장기 예측은 월별, 계절별, 연도별 예측을 하였으며, 단기 예측은 7일간의 예측을 하였다. 결과로서 RMSE 측도에 의한 예측 오차로 비교해 본 결과 다중선형회귀와 SVM 보다는 딥러닝 네트워크가 예측 정확도 측면에서 더 우수하였다. 또한, DNN 보다 시계열 예측에 우수한 모델인 LSTM이 예측 정확도 측면에서 우수하였다. 입출력 구조에 따른 실험 결과는 모델 1보다 모델 2가 오차가 적었으며, 모델 2보다는 모델 3이 오차가 적었다.
본 연구는 우리나라 113개 중권역에 대한 기후변화에 따른 미래 홍수 피해액의 예측을 위하여 26개 GCM 모형에서 생산한 강우자료와 1시간 최대 강수량, 10분 최대 강수량, 1일 강수량이 80 mm 초과한 일수, 일 최대 강수량, 연강수량, 유역고도, 시가화율, 인구 밀도, 자산 밀도, 도로와 같은 사회 간접 시설, 하천개수율, 하수도 보급률, 배수펌프시설, 유수지용량 및 과거 홍수 피해액 자료를 활용하였다. 구축된 자료에 대하여 구속 다중선형회귀 모형(Constrained Multiple Linear Regression Model)을 적용하여 홍수 피해액과 여타 입력자료 사이의 상관관계를 구축하고 RCP 4.5와 8.5에 대한 26개 GCM 모형 산정자료를 활용하여 미래 홍수 피해액을 예측하였다. 홍수피해에 주된 요인이 되는 연강수량, 극치 강우량 등 강우관련 요소들이 전반적으로 증가하며 이로 인하여 과거 홍수로 인한 피해액이 광범위하게 증가할 것으로 판단되고 특히 동해안 및 남강댐 유역에 미래의 홍수피해액이 높게 예측되는 경향을 보인다.
Journal of the Korean Data and Information Science Society
/
제12권1호
/
pp.27-40
/
2001
본 연구는 시간의 변화에 따라 여러 개의 전환점이 발생하여 선형회귀모형들이 여러번 변화할 때의 변환시점을 Gasser, Stroke와 Jennen-Steinmez의 잔차분산 추정량을 이용하여 검정하고 실제의 몇 가지 모형을 제시하여 Graphic을 통하여 조사한 결과 여기서 제시한 방법이 더 효과적으로 자중전환점을 찾을 수 있었다.
풍속은 다른 기상요소들보다 순간 변동이 심하고 국지성이 강하여 수치 예보 모델만으로 예측의 정확성을 높이기가 어렵다. 기상청의 단기 풍속 예보는 전 지구적 통합 예보모델인 UM(Unified Model)의 예측값에 MOS(Model Output Statictics)를 통한 보정을 수행하며, 보정식의 생성에 다중선형회귀분석 방법을 사용한다. 본 연구자는 유전프로그래밍(Genetic Programming)을 이용한 비선형 회귀분석 기반의 보정식 생성을 통하여 이를 개선한 바 있는데, 본 연구에서는 보다 향상된 성능을 얻기 위하여 GP 기법 측면에서 Automatically Defined Functions과 다군집(Multiple Populations) 수행을 통해 성능을 높이고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.