• Title/Summary/Keyword: 다중모드간섭기

Search Result 38, Processing Time 0.031 seconds

Nano-scale Power Splitters by using Plasmonic Multimode Interference Couplers (플라즈마 다중모드 간섭 결합기를 사용한 나노 크기의 전력분배기)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.47-52
    • /
    • 2011
  • Nano-scale power splitter based on Si plasmonic waveguides are designed by utilizing the multimode interference (MMI) coupler. Effective dielectric method and longitudinal modal transmission-line theory are used for simulating the light propagation and optimizing the structural parameters at 3-D guiding geometry. The designed $1{\times}2$ 50:50 MMI power splitter has a nano-scale size of only $800nm{\times}850nm$. In order to achieve a variable power splitting ratio, a $2{\times}2$ MMI coupler is designed and the corresponding power splitting ratio can be tuned in the range of 78.5%:15.5%~5.5%:86.6%. Also, it is shown that it has a large bandwidth of $1.5{\mu}m{\sim}1.7{\mu}m$. In this range, the transmission is over 0.8.

Rectangular ring resonator with optimum multimode inteference (최적의 다중모드 간섭기로 결합된 직사각형 링 공진기)

  • Kim, Doo-Gun;Choi, Woon-Kyung;Choi, Young-Wan;Yi, Jong-Chang
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.11
    • /
    • pp.26-35
    • /
    • 2007
  • We characterized the properties of the fabricated filter with the total internal reflection mirror (TIR) in the rectangular ring resonator and very small multimode interference (MMI) couplers on an InP material platform for photonic integrated circuits. Coupling power in and out of a resonator is increased by using an optimum MMI length of 110 ${\mu}m$ and a width of 9 ${\mu}m$, respectively. The semiconductor optical amplifier with the length of 120 ${\mu}m$ is integrated in the resonator to compensate the loss of the internal waveguide and the TIR mirror. A free spectral range of approximately 2 nm (244 GHz) is observed with an on-off ratio of 13 dB. The curve fitting also yields the power coupled per pass as 42%. To reach critical coupling at this coupling level would require a round trip loss of about 2.4 dB.

Implementation of Polarization Beam-Splitter based on DFB-Assisted Plasmonic Multimode Interference Coupler (DFB 구조형 플라즈마 다중모드 간섭 결합기를 사용한 편향기의 구현)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.5
    • /
    • pp.143-148
    • /
    • 2013
  • A novel ultracompact polarization beam-splitter (PBS) combining two plasmonic multimode interference couplers (P-MMICs) and DFB guiding structure is implemented. The $2{\times}1$ and $1{\times}2$ P-MMICs are designed to collect the polarized powers of TE and TM modes reflected by or transmitted through an internal DFB structure. The simulation results show that the designed DFB-assisted PBS is very short (about $75{\mu}m$), and has a low insertion loss, a high extinction ratio, and a broad bandwidth of 20 nm.

Design of Polarization-Insensitive Directional Couplers and Multimode Interference Couplers Integrated with Bragg Grating Waveguide (Bragg 격자구조가 집적된 편광 무의존성 방향성 결합기와 다중모드 간섭 결합기의 설계)

  • Ho, Kwang-Chun
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.5
    • /
    • pp.295-302
    • /
    • 2007
  • This paper presents a rigorous comparison of the design characteristics of polarization-insensitive directional coupler (DC) and multimode interference (MMI) coupler based on rib type waveguides, by using longitudinal modal transmission-line theory (L-MTLT). It shows that the multimode mixing and interference property of MMI can be structurally designed through the continuous evolution of the two-mode coupling property of DC. It also compares and analyzes the coupling efficiency along with the coupling length and the wavelength between polarization-insensitive DC and MMI. From the design properties obtained, it demonstrates for the first time the integration of polarization-insensitive DC or MMI with a Bragg grating and evaluates precisely the filtering characteristics. The numerical results reveal that the DC, as long as it is designed to have the same coupling length for TE and TM modes, has better performance than the MMI in polarization-insensitive filtering behaviour. However, it shows that the MMI with much less coupling length than DC is preferred in the miniaturization of integrated devices.

Joint Interference Alignment and Power Allocation for K-User Multicell MIMO Channel Through Staggered Antenna Switching (엇갈린 안테나 스위칭을 통한 K- 사용자 다중 셀 MIMO 채널의 조인트 간섭 정렬 및 전력 할당)

  • Kim, Jeong-Su;Lee, Moon-Ho;Park, Daechul
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.2
    • /
    • pp.33-48
    • /
    • 2018
  • In this paper, we characterise the joint interference alignment and power allocation strategies for a K-user multicell multiple-input multiple-output (MIMO) Gaussian interference channel. We consider a MIMO interference channel with a blind interference alignment through staggered antenna switching on the receiver. We explore the power allocation and the feasibility condition for cooperative cell-edge (CE) mobile users (MUs) by assuming that the channel state information is unknown. The new insight behind the transmission strategy of the proposed scheme is premeditated (randomly generated transmission strategy) and partial cooperative CE MUs, where the transmitter is equipped with a conventional antenna, the receiver is equipped with a reconfigurable multimode antenna (staggered antenna switching pattern), and the receiver switches between preset T modes. Our proposed scheme assists and aligns the desired and interference signals to cancel the common interference signals, since the received signal must have a corresponding independent signal subspace. The sum capacity for a K-user multicell MIMO Gaussian interference channel with reconfigurable multimode antennas is completely characterised.

Realization of Plasmonic Adaptive Coupler using Curved Multimode Interference Waveguide (곡면형 다중모드 간섭 도파로를 사용한 플라즈마 적응 결합기의 구현)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.165-170
    • /
    • 2016
  • Nano-scale power splitter based on curved plasmonic waveguides are designed by utilizing the multimode interference (MMI) coupler. To analyze easily the adaptive properties of plasmonic curverd multimode interference coupler(PC-MMIC), the curved form transforms equivalently into a planar form by using conformal transformation method. Also, effective dielectric method and longitudinal modal transmission-line theory are used for simulating the light propagation and optimizing the structural parameters at 3-D guiding geometry. The designed $2{\times}2$ PC-MMIC does not work well for quasi-TM mode case due to the bending structure, and it does not exist 3dB coupling property, in which the power splitting ratio is 50%:50%, for quasi-TE mode case. Further, the coupling efficiency is better when the signal is incident at channel with large curvature radius than small curvature radius.

Integrated Optical Waveguide Isolator Based Multimode Interference Using Magnetooptic Characteristics (자기 광학적 특성을 이용한 다중 모드 간섭에 기반한 집적 광 도파로 아이솔레이터)

  • Yang, Jeong-Su
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.148-152
    • /
    • 2005
  • A novel interferometric isolator has been proposed and designed to fabrticate waveguide magnetooptic isolator operating at a wavelength of $1.55{\cal}um$. The device consists of MMI (multimode interference) couplers and has a magnetooptic guiding layer with different layer structure in arms of the inteferometer. The layer structures in the arms of inteferometer are $HfO_2/CeY_2Fe_5O_{12}/NOG$ and $SiO_2/CeY_2Fe_5O_{12}/NOG$, respectively. This configuration give rise to different nonreciprocal phase shift. In consequence, the isolator operates under a unidirectional magnetic field. The optimized structure of the isolator was determined by a 3D beam propagation method.

Optimized design of the multimode interferenced-polarization splitter with a photodefinable polyimide (감광성 폴리이미드 재료를 가정한 다중모드 간섭 편광분리 소자의 최적설계)

  • Hong, Jung-Moo;Ryoo, Hyun-Ho;Jeong, Jae-Wan;Lee, Seung-Gol;Lee, El-Hang;Park, Se-Geun;O, Beom-Hoan;Woo, Deok-Ha;Kim, Sun-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04b
    • /
    • pp.101-104
    • /
    • 2002
  • The beam splitter is important in optical communication systems. in this work, thc quasi-state based on four-mode interference in thc MMI coupler is proposed, and so, device length is shorten to be 1/5 of general designed length. We designed thc polarization splitter based on thc concept of quasi-state. Thc analysis has been accomplished by thc effective index method(EIM) and thc mode propagation analysis(MPA) for given structure.

  • PDF

Fabrication of multi-mode interference $1\times4$ optical power splitter using glass integrated optics (유리집적광학을 이용한 다중모드간섭 $1\times4$ 광파워 분리기 제작)

  • 강동성;전금수;장명호;반재경
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.6
    • /
    • pp.418-422
    • /
    • 2000
  • In this paper, we have modeled and fabricated a mutimode interference (MMI) $1\times4$ optical power splitter using finite-difference beam propagation method and $Ag^+-Na^+$ ion-exchanged method in BK7 glass. The power splitting ratio of the fabricated MMI $1\times4$ optical power splitter shows 0.46 dB..46 dB.

  • PDF