• 제목/요약/키워드: 다중레이블 분류방법

검색결과 24건 처리시간 0.028초

다중레이블 조합을 사용한 단백질 세포내 위치 예측 (Multi-Label Combination for Prediction of Protein Subcellular Localization)

  • 지상문
    • 한국정보통신학회논문지
    • /
    • 제18권7호
    • /
    • pp.1749-1756
    • /
    • 2014
  • 단백질이 존재하는 세포내 위치에 대한 지식은 단백질의 기능과 관련된 중요한 정보이다. 본 논문은 개선된 레이블 멱집합 다중레이블 분류방법을 제안하여 단백질이 존재하는 세포내의 다중 위치를 예측한다. 다중레이블 분류 방법 중에서 레이블 멱집합 방법은 특정 생물학적 기능을 수행하는 단백질의 세포내 위치간의 연관 관계를 효과적으로 모델링할 수 있다. 본 논문은 다중레이블을 다른 다중레이블들의 선형조합으로 나타낼 때의 조합가중치를 제약조건이 있는 최적화를 통하여 구하고, 이를 사용하여 여러 다중레이블의 예측 확률들을 조합하여 최종적인 예측을 수행한다. 인간 단백질 자료에 대한 실험에서 제안한 방법이 다른 단백질 세포내 위치 예측 방법에 비하여 높은 성능을 보였다. 이는 제안한 방법이 레이블 멱집합 방법에서 사용되는 다중레이블들내에 존재하는 중복 정보를 이용하여 다중 레이블의 예측확률을 성공적으로 강화할 수 있기 때문이다.

단백질의 세포내 위치 예측을 위한 다중레이블 분류 방법의 성능 비교 (A Performance Comparison of Multi-Label Classification Methods for Protein Subcellular Localization Prediction)

  • 지상문
    • 한국정보통신학회논문지
    • /
    • 제18권4호
    • /
    • pp.992-999
    • /
    • 2014
  • 단백질이 존재하는 세포내의 다중 위치를 정확하게 예측하기 위하여 다중레이블 학습 방법을 광범위하게 비교한다. 이를 위하여 다중레이블 분류의 접근 방법인 알고리즘 적응, 문제 변환, 메타 학습의 여러 방법을 비교 평가한다. 다양한 관점에서 다중레이블 분류 방법의 특성을 평가하기 위하여 12가지 평가 척도를 사용하였고, 최적의 성능을 보이는 방법을 찾기 위하여 새로운 요약 척도를 사용하였다. 비교 실험 결과, 흔하지 않은 다중레이블 집합을 가지치기 하는 멱집합 방법과, 관련 레이블들을 추가된 특징으로 나타내는 분류기-체인 방법의 성능이 높았다. 또한, 이들 방법들로 구성된 여러 개의 분류기를 조합하면 더욱 성능이 향상되었다. 즉, 세포내 위치간의 연관관계를 사용하는 것이 예측에 효과적인데, 특정 생물학적 기능을 수행하는 단백질의 세포내 위치들의 관계는 독립적이지 않고 서로 관련되어 있기 때문이라 판단된다.

의도 정보를 활용한 다중 레이블 오픈 의도 분류 (Multi-label Open Intent Classification using Known Intent Information)

  • 박나현;조성민;송현제
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.479-484
    • /
    • 2023
  • 다중 레이블 오픈 의도 분류란 다중 의도 분류와 오픈 의도 분류가 합쳐져 오픈 도메인을 가정하고 진행하는 다중 의도 분류 문제이다. 발화 속에는 여러 의도들이 존재한다. 이때 사전에 정의된 의도 여부만을 판별하는 것이 아니라 사전에 정의되어 있는 의도에 대해서만이라도 어떤 의도인지 분류할 수 있어야 한다. 본 논문에서는 발화 속 의도 정보를 활용하여 다중 레이블 오픈 의도를 분류하는 모델을 제안한다. 먼저, 문장의 의도 개수를 예측한다. 그리고 다중 레이블 의도 분류기를 통해 다중 레이블 의도 분류를 진행하여 의도 정보를 획득한다. 획득한 의도 정보 속 다중 의도 개수와 전체 의도 개수를 비교하여 전체 의도 개수가 더 많다면 오픈 의도가 존재한다고 판단한다. 실험 결과 제안한 방법은 MixATIS의 75% 의도에서 정확도 94.49, F1 97.44, MixSNIPS에서는 정확도 86.92, F1 92.96의 성능을 보여준다.

  • PDF

레이블 멱집합 분류와 다중클래스 확률추정을 사용한 단백질 세포내 위치 예측 (Prediction of Protein Subcellular Localization using Label Power-set Classification and Multi-class Probability Estimates)

  • 지상문
    • 한국정보통신학회논문지
    • /
    • 제18권10호
    • /
    • pp.2562-2570
    • /
    • 2014
  • 단백질의 기능을 유추할 수 있는 중요한 정보중의 하나는 단백질이 존재하는 세포내 위치이다. 최근에는 하나의 단백질이 동시에 존재하는 여러 세포내 위치를 예측하는 연구가 활발하다. 본 논문에서는 단백질이 존재하는 세포내의 다중위치를 예측하기 위해서 레이블 멱집합 방법을 개선한다. 레이블 멱집합 방법으로 분류한 다중위치들을 예측 확률에 따라 결합하여 최종적인 다중레이블로 분류한다. 각 다중위치에 대한 정확한 확률적 기여를 구하기 위하여 쌍별 비교와 오류정정 출력코드를 사용한 다중클래스 확률추정 방법을 적용하였다. 단백질 세포내 위치 예측 실험에 제안한 방법을 적용하여 성능이 향상됨을 보였다.

효과적인 애스팩트 마이닝을 위한 다중 레이블 분류접근법 (Multi-Label Classification Approach to Effective Aspect-Mining)

  • 원종윤;이건창
    • 경영정보학연구
    • /
    • 제22권3호
    • /
    • pp.81-97
    • /
    • 2020
  • 최근의 감성분류 연구는 출력변수가 하나인 단일레이블 분류방법을 사용한 연구가 많다. 특히, 이러한 연구는 하나의 극성 값(긍정, 부정)만을 찾는 연구가 많다. 그러나 한 문장 안에는 다중적인 의미가 내포되어 있다. 그 중에서도 감정과 오피니언이 이러한 특징을 갖는다. 본 논문은 두 가지 연구목적을 제시한다. 첫째, 한 문장 안에 다양한 토픽(주제 또는 애스팩트)이 있다는 사실을 기반으로, 해당 문장을 각 애스팩트 별로 감성을 분류하는 애스팩트 마이닝을 수행한다. 둘째, 두개 이상의 종속변수(출력 값)를 한 번에 분석하는 다중레이블 분류방법을 적용한다. 이에 본 연구는 감성분류의 연구가 단일분류기에 의해서만 이루어진 연구를 개선하고자 다중레이블 분류방법에 의한 애스팩트 마이닝을 수행하고자 한다. 이와 같은 연구목적을 달성하기 위해 국내 뮤지컬 데이터를 수집하였다. 분석결과 문장 안에 있는 다양한 애스팩트별 감성을 추출하였고, 유의한 결과를 얻었다.

다중 레이블 분류의 정확도 향상을 위한 스킵 연결 오토인코더 기반 레이블 임베딩 방법론 (Label Embedding for Improving Classification Accuracy UsingAutoEncoderwithSkip-Connections)

  • 김무성;김남규
    • 지능정보연구
    • /
    • 제27권3호
    • /
    • pp.175-197
    • /
    • 2021
  • 최근 딥 러닝 기술의 발전으로 뉴스, 블로그 등 다양한 문서에 포함된 텍스트 분석에 딥 러닝 기술을 활용하는 연구가 활발하게 수행되고 있다. 다양한 텍스트 분석 응용 가운데, 텍스트 분류는 학계와 업계에서 가장 많이 활용되는 대표적인 기술이다. 텍스트 분류의 활용 예로는 정답 레이블이 하나만 존재하는 이진 클래스 분류와 다중 클래스 분류, 그리고 정답 레이블이 여러 개 존재하는 다중 레이블 분류 등이 있다. 특히, 다중 레이블 분류는 여러 개의 정답 레이블이 존재한다는 특성 때문에 일반적인 분류와는 상이한 학습 방법이 요구된다. 또한, 다중 레이블 분류 문제는 레이블과 클래스의 개수가 증가할수록 예측의 난이도가 상승한다는 측면에서 데이터 과학 분야의 난제로 여겨지고 있다. 따라서 이를 해결하기 위해 다수의 레이블을 압축한 후 압축된 레이블을 예측하고, 예측된 압축 레이블을 원래 레이블로 복원하는 레이블 임베딩이 많이 활용되고 있다. 대표적으로 딥 러닝 모델인 오토인코더 기반 레이블 임베딩이 이러한 목적으로 사용되고 있지만, 이러한 기법은 클래스의 수가 무수히 많은 고차원 레이블 공간을 저차원 잠재 레이블 공간으로 압축할 때 많은 정보 손실을 야기한다는 한계가 있다. 이에 본 연구에서는 오토인코더의 인코더와 디코더 각각에 스킵 연결을 추가하여, 고차원 레이블 공간의 압축 과정에서 정보 손실을 최소화할 수 있는 레이블 임베딩 방법을 제안한다. 또한 학술연구정보서비스인 'RISS'에서 수집한 학술논문 4,675건에 대해 각 논문의 초록으로부터 해당 논문의 다중 키워드를 예측하는 실험을 수행한 결과, 제안 방법론이 기존의 일반 오토인코더 기반 레이블 임베딩 기법에 비해 정확도, 정밀도, 재현율, 그리고 F1 점수 등 모든 측면에서 우수한 성능을 나타냄을 확인하였다.

다중 레이블 분류 작업에서의 Coarse-to-Fine Curriculum Learning 메카니즘 적용 방안 (Applying Coarse-to-Fine Curriculum Learning Mechanism to the multi-label classification task)

  • 공희산;박재훈;김광수
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.29-30
    • /
    • 2022
  • Curriculum learning은 딥러닝의 성능을 향상시키기 위해 사람의 학습 과정과 유사하게 일종의 'curriculum'을 도입해 모델을 학습시키는 방법이다. 대부분의 연구는 학습 데이터 중 개별 샘플의 난이도를 기반으로 점진적으로 모델을 학습시키는 방안에 중점을 두고 있다. 그러나, coarse-to-fine 메카니즘은 데이터의 난이도보다 학습에 사용되는 class의 유사도가 더욱 중요하다고 주장하며, 여러 난이도의 auxiliary task를 차례로 학습하는 방법을 제안했다. 그러나, 이 방법은 혼동행렬 기반으로 class의 유사성을 판단해 auxiliary task를 생성함으로 다중 레이블 분류에는 적용하기 어렵다는 한계점이 있다. 따라서, 본 논문에서는 multi-label 환경에서 multi-class와 binary task를 생성하는 방법을 제안해 coarse-to-fine 메카니즘 적용을 위한 방안을 제시하고, 그 결과를 분석한다.

  • PDF

다중 분류기 통합을 위한 퍼지 행위지식 공간 (Fuzzy Behavior Knowledge Space for Integration of Multiple Classifiers)

  • 김봉근;최형일
    • 인지과학
    • /
    • 제6권2호
    • /
    • pp.27-45
    • /
    • 1995
  • 본 논문에서는 다중 분류기의 통합을 위해 퍼지 행위지식 공간을 구성하고 이를 이용하는 방법을 제안한다.기존의 행위지식 공간은 각 분류기들이 서로 독립적일 필요가 없고 적응적 학습이 가능한 것으로 단지 하나의 클래스 레이블만 을 출력하는 분류기들의 통합에 가장 최적의 방법으로 알려졌다.그러나 행위지식 공간은 각 분류기가 출력하는 클래스 레이블에 대한 측정값과 경험적 지식을 통합과정에 반영하기 어렵다는 문제점을 갖고 있다.이러한 행위지식 공간의 문제점을 해결하기 위해 본 논문에서는 퍼지개념을 이용한 퍼지 행위지식 공간을 정의하고 이를 다중 분류기의 통합에 적용하기 위한 방법을 기술한다.또한,퍼지 행위지식 공간의 유용성을 증명하기 위해 각 분류기로 부터 얻어진 클래스 레이블들과 이에 관련된 측정값을 포함하는 분류결과들의 통합에 적용된 실험결과를 기술한다.

  • PDF

An Efficient Deep Learning Ensemble Using a Distribution of Label Embedding

  • Park, Saerom
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권1호
    • /
    • pp.27-35
    • /
    • 2021
  • 본 연구에서는 레이블 임베딩의 분포를 반영하는 딥러닝 모형을 위한 새로운 스태킹 앙상블 방법론을 제안하였다. 제안된 앙상블 방법론은 기본 딥러닝 분류기를 학습하는 과정과 학습된 모형으로 부터 얻어진 레이블 임베딩을 이용한 군집화 결과로부터 소분류기들을 학습하는 과정으로 이루어져 있다. 본 방법론은 주어진 다중 분류 문제를 군집화 결과를 활용하여 소 문제들로 나누는 것을 기본으로 한다. 군집화에 사용되는 레이블 임베딩은 처음 학습한 기본 딥러닝 분류기의 마지막 층의 가중치로부터 얻어질 수 있다. 군집화 결과를 기반으로 군집화 내의 클래스들을 분류하는 소분류기들을 군집의 수만큼 구축하여 학습한다. 실험 결과 기본 분류기로부터의 레이블 임베딩이 클래스 간의 관계를 잘 반영한다는 것을 확인하였고, 이를 기반으로 한 앙상블 방법론이 CIFAR 100 데이터에 대해서 분류 성능을 향상시킬 수 있다는 것을 확인할 수 있었다.

KE-T5 기반 한국어 대화 문장 감정 분류 (KE-T5-Based Text Emotion Classification in Korean Conversations)

  • 임영범;김산;장진예;신사임;정민영
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.496-497
    • /
    • 2021
  • 감정 분류는 사람의 사고방식이나 행동양식을 구분하기 위한 중요한 열쇠로, 지난 수십 년간 감정 분석과 관련된 다양한 연구가 진행되었다. 감정 분류의 품질과 정확도를 높이기 위한 방법 중 하나로 단일 레이블링 대신 다중 레이블링된 데이터 세트를 감정 분석에 활용하는 연구가 제안되었고, 본 논문에서는 T5 모델을 한국어와 영어 코퍼스로 학습한 KE-T5 모델을 기반으로 한국어 발화 데이터를 단일 레이블링한 경우와 다중 레이블링한 경우의 감정 분류 성능을 비교한 결과 다중 레이블 데이터 세트가 단일 레이블 데이터 세트보다 23.3% 더 높은 정확도를 보임을 확인했다.

  • PDF