The climate change impacts on hydrological components and water balance in Jeju Island were evaluated using multiple climate models and watershed model, SWAT-K. To take into account the uncertainty of the future forecast data according to climate models, climate data of 9 GCMs were utilized as weather data of SWAT-K for future period (2010-2099). Using the modeling results of the past (1992-2013) and the future period, the hydrological changes of each year were analyzed and the precipitation, runoff, evapotranspiration and recharge were increasing. Compared with the past, the change in the runoff was the largest (up to 50% increase) and the evapotranspiration was relatively small (up to 11% increase). Monthly results show that the amount of evapotranspiration and the amount of recharge are greatly increased as the amount of precipitation increases in August and September, while the amount of evapotranspiration decreases in the same period. January and December showed the opposite tendency. As a result of analyzing future water balance changes, the ratio of runoff, evapotranspiration, and recharge to rainfall did not change much, but compared to the past, the runoff rate increased up to 4.3% in the RCP 8.5 scenario, while the evapotranspiration rate decreased by up to 3.5%. Based on the results of other researchers and this study, it is expected that rainfall and runoff will increase gradually in the future under the assumption of present climate change scenarios. Especially summer precipitation and runoff are expected to increase. As a result, the amount of groundwater recharge in Jeju Island will increase.
This study aims to predict the future flood damage cost of 113 middle range watersheds using 26 GCM outputs, hourly maximum rainfall, 10-min maximum rainfall, number of days of 80 mm/day, daily rainfall maximum, annual rainfall amount, DEM, urbanization ratio, population density, asset density, road improvement ratio, river improvement ratio, drainage system improvement ratio, pumping capacity, detention basin capacity and previous flood damage costs. A constrained multiple linear regression model was used to construct the relationships between the flood damage cost and other variables. Future flood damage costs were estimated for different RCP scenarios such as 4.5 and 8.5. Results demonstrated that rainfall related factors such as annual rainfall amount, rainfall extremes etc. widely increase. It causes nationwide future flood damage cost increase. Especially the flood damage cost for Eastern part watersheds of Kangwondo and Namgang dam area may mainly increase.
Sungho Jung;Xuan-Hien Le;Van-Giang Nguyen;Giha Lee
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.280-280
/
2023
강수의 정확한 시·공간적 추정은 홍수 대응, 가뭄 관리, 수자원 계획 등 수문학적 모델링의 핵심 기술이다. 우주 기술의 발전으로 전지구 강수량 측정 프로젝트(Global Precipitation Measurement, GPM)가 시작됨에 따라 위성의 여러 센서를 이용하여 다양한 고해상도 강수량 자료가 생산되고 있으며, 기후변화로 인한 수재해의 빈도가 증가함에 따라 준실시간(Near-Real-Time) 위성 강수 자료의 활용성 및 중요성이 높아지고 있다. 하지만 준실시간 위성 강수 자료의 경우 빠른 지연시간(latency) 확보를 위해 관측 이후 최소한의 보정을 거쳐 제공되므로 상대적으로 강수 추정치의 불확실성이 높다. 이에 따라 본 연구에서는 앙상블 머신러닝 기반 수집된 위성 강수 자료들을 관측 자료와 병합하여 보정된 준실시간 강수량 자료를 생성하고자 한다. 모형의 입력에는 시단위 3가지 준실시간 위성 강수 자료(GSMaP_NRT, IMERG_Early, PERSIANN_CCS)와 방재기상관측 (AWS)의 온도, 습도, 강수량 지점 자료를 활용하였다. 지점 강수 자료의 경우 결측치를 고려하여 475개 관측소를 선정하였으며, 공간성을 고려한 랜덤 샘플링으로 375개소(약 80%)는 훈련 자료, 나머지 100개소(약 20%)는 검증 자료로 분리하였다. 모형의 정량적 평가 지표로는 KGE, MAE, RMSE이 사용되었으며, 정성적 평가 지표로 강수 분할표에 따라 POD, SR, BS 그리고 CSI를 사용하였다. 머신러닝 모형은 개별 원시 위성 강수 자료 및 IDW 기법보다 높은 정확도로 강수량을 추정하였으며 공간적으로 안정적인 결과를 나타내었다. 다만, 최대 강수량에서는 다소 과소추정되므로 이는 강수와 관련된 입력 변수의 개수 업데이트로 해결할 수 있을 것으로 판단된다. 따라서 불확실성이 높은 개별 준실시간 위성 자료들을 관측 자료와 병합하여 보정된 최적 강수 자료를 생성하는 머신러닝 기법은 돌발성 수재해에 실시간으로 대응 가능하며 홍수 예보에 신뢰도 높은 정량적인 강수량 추정치를 제공할 수 있다.
Chang, Hyung Joon;Lee, Hyo Sang;Kim, Seong Goo;Park, Ki Soon
Proceedings of the Korea Water Resources Association Conference
/
2017.05a
/
pp.224-224
/
2017
지구온난화로 인한 기후변화 등으로 안전한 하천구조물을 설계하기 위해서는 신뢰할 수 있는 홍수량 산정이 필요하다. 신뢰할 수 있는 홍수량 산정을 위해서는 정도 높은 과거 수문자료가 필요하나 국내의 많은 중소 규모유역이 미계측 유역 또는 과거 수문자료 부족으로 신뢰 할 수 있는 홍수량 산정이 어려운 실정이다. 본 연구에서는 미계측 유역의 홍수량 산정을 위하여 확률분포모형(PDM)의 매개변수 지역화를 수행하였다. 매개변수 지역화 연구를 수행하기 위하여, 금강 25개 유역을 대상으로 유역별 9~18개의 단기홍수수문사상을 선정하였다. 선정된 단기홍수수문사상을 확률분포모형에 적용하기위하여, MCAT (Monte Carlo Analysis Toolbox)을 활용하여 검정 및 검증을 수행하였으며, 목적함수는 수문곡선 모든 구간을 반영하는 NSE (Nash Sutcliffe Efficiency)와 고유량 부분을 반영하는 RMSE (Root Mean Squared Error) - FH를 적용하였다. 각각의 목적함수에 대하여 검정 모형 매개변수와 유역 특성인자의 다중 선형회귀식을 강우유출모형 매개변수 지역화 모형으로 제시하였다. 매개변수 지역화 결과의 평가를 위하여 청주 유역을 미계측 유역으로 가정하였다. 청주 유역에 대하여 지역화 매개변수를 적용한 결과, 17개의 사상 중 11개의 사상에서 NSE 목적함수 값이 0.5이상으로 전체적인 수문곡선의 경향성을 보였으며, 첨두 홍수량은 17개 사상 중 11개 사상에서 관측 첨두 홍수량 값의 20%이내를 제시하여 적합한 결과를 제시하였다. 또한 금강 25개 유역에 Jackknife 방법으로 검정 결과 관측 첨두 홍수량 값 20%이내의 성능을 보이는 사상이 56%를 포함하고 있어 의미있는 지역화 모형을 제시하였다고 판단된다. 본 연구에서 제시한 매개변수 지역화 방법은 미계측 유역의 유출모의에 활용될 수 있음을 확인하였다.
Kim, Jong Sung;Choi, Chang Hyun;Lee, Jong So;Kim, Hung Soo
Proceedings of the Korea Water Resources Association Conference
/
2017.05a
/
pp.154-154
/
2017
전 세계적인 기후변동과 기후변화의 영향으로 대규모 인명 및 재산피해를 유발하는 자연재난의 빈도와 강도가 증가하고 있다. 이렇게 변화하는 상황에서 효율적인 대책을 수립하기 위해서는 재해에 노출된 특성을 지역적 특성과 함께 고려하여 지역별로 재해에 위험한 정도를 평가하는 것이 선행되어지고, 재난 피해 발생전에 피해 지역 및 범위를 예측하는 것이 필요하다고 판단된다. 따라서 본 연구에서는 국내 자연재난 피해의 65% 이상을 차지하는 호우피해를 대상으로 PSR(Pressure-State-Response) 구조를 이용하여 호우피해위험지수(Heavy rain Damage Risk Index, HDRI)를 제안하여 호우 위험도를 평가하고자하였다. 또한 도출된 지역별 위험등급에 따른 호우피해 예측함수를 개발하여 재해발생 전에 개략적인 피해의 범위를 예측하고자 하였다. 먼저 지역별 호우 위험도 평가를 위해 압력지표, 현상지표, 대책지표를 구축하고, 주성분분석을 이용하여 평가지표를 결정하였다. 결정된 평가지표를 동일한 가중치를 부여하여 호우피해위험지수를 도출하였다. 분석결과, 경기도 31개 지자체 중에서 가장 안전한 1등급인 지자체는 15개의 지자체로 나타났으며, 2등급인 지자체는 7개, 3등급인 지자체는 9개로 분류되었다. 지자체별 호우 위험도 등급에 따라서 재해기간별 총강우량, 재해일수, 선행강우량(1~5일), 지속시간별 최대강우량(1~24시간) 등의 자료를 설명변수로 구축하였고, 다중회귀모형과 주성분분석을 활용하여 예측함수를 개발하였다. 등급별 호우피해 예측함수는 N-RMSE가 12~18%로 호우피해를 적절하게 예측하는 것으로 평가되었다. 본 연구를 통해 지자체별 호우피해위험도 등급을 파악 할 수 있으며, 평가된 호우피해위험도 등급별로 호우피해 예측함수 개발을 통해 사전에 호우피해 발생 및 규모를 파악할 수 있게 되었다. 따라서 본 연구의 결과는 각 지자체 및 관련 부처에서 효과적인 방재체계를 수립하는데 있어 기초자료로 활용될 수 있을 것으로 판단된다.
Jung, Sung Ho;Nguyen, Van Giang;Kim, Young Hun;Lee, Gi Ha
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.40-40
/
2021
수재해 방지를 위한 수문해석 모형에서 정량적인 강수자료의 역할은 매우 중요하다. 최근에는 기후변화로 인한 국지성 집중호우 등 돌발 강수의 빈도가 증가하고 있어 지상에 설치된 우량계보다 시·공간적 변동성을 반영할 수 있는 격자형 위성 강수자료의 활용성이 커지고 있다. 하지만 위성강수자료는 관측 시에 대기의 상태 또는 위성별 관측 센서, 공간적 스케일 차이 등에 의해 실제 내린 강수와의 편의가 존재한다. 이를 해결하기 위해 지점 강수자료를 이용한 통계적, 지형정보학적 상세화 기법이 적용되고 있으나, 대부분의 연구에서 강수자료의 양적 보정만을 목적으로 수행되었다. 본 연구에서는 머신러닝 기반의 랜덤포레스트(random forest) 모델을 사용하여 다중위성 강수자료(CHIRPSv2, CMORPH, GSMaP, TRMMv7)와 기상청에서 제공하는 AWS, ASOS 지점 강수를 사용하여 최적 위성강수자료를 생성 후 각 위성강수자료와 비교·분석하였다. 2003년에서 2017년까지의 각 위성강수자료를 수집하여 같은 공간 스케일로 전처리한 뒤 모델에 입력하였으며 AWS 강수자료는 훈련, ASOS 강수자료는 검증에 이용되었다. 그 결과, 생성된 최적 위성강수자료는 각 위성강수자료보다 지점강수와의 편의가 줄고 높은 상관관계를 나타내고 있다. 이는 앞으로 사용될 위성강수자료의 시·공간적 보정 및 단기예측에 활용할 수 있으며, 특히 원격탐사자료의 의존도가 높은 미계측 대유역 수문해석에 정량적인 강수자료를 제공할 수 있을 것으로 판단된다.
The contents of soil organic matter (SOM) and $Al_o+1/2Fe_o$ in soils are important criteria for the classification of new Andisols in Soil Taxonomy system. There are many soil types in Jeju Island with various soil forming environments. This paper was conducted to estimate the contents of soil organic matter and the content of ammonium oxalate extracted Al and Fe ($Al_o+1/2Fe_o$) using various environmental variables and to make soil property maps using a statistical analyses. The soil samples were collected from 321 locations and analyzed to measure the contents of SOM and $Al_o+1/2Fe_o$. It was analyzed the relationships among them and various environmental variables such as temperature, precipitation, net primary product, radiation, evapotranspiration, altitude, soil forming energy, topographic wetness index, elevation, difference surrounded area, and distances from the shore and the peak. We can exclude multi-collinearity among environmental variables with principal component analysis and reduce all the variables to 3 principal components. The contents of SOM and $Al_o+1/2Fe_o$ were estimated by multiple regression models and maps of them were made using the models.
Magazine of the Korean Society of Agricultural Engineers
/
v.40
no.1
/
pp.68-77
/
1998
The purpose of this paper is to establish a method estimating the daily urban water demand using statistical analysis that is used for developing the efficient management and operation of the water supply facilities, and accurary of the model is verified by error rate and F-value. The data used in this study were the daily urban water use, the weather conditions such as temperature, precipitation, relative humidity, etc, and the day of The week. The case study was taken placed for the city of Namwon in Korea. The raw data used in this study were rearranged either by month or by season for analysis purpose, and the statistical analysis was applied to the data to obtain the regression model As a result of this study, the linear regression model was developed to estimate the daily urban water use with weather condition. The regression constant and coefficients of the model were determined for each month of a year. The accuracy of the model was within 3% of average error and within 11% of maximum error. The resulting model was found to he useful to the practical operation and management of the water supply facilities.
Kim, Donghyun;Lee, Haneul;Bae, Younghye;Joo, Hongjun;Kim, Deokhwan;Kim, Hung Soo
Journal of Wetlands Research
/
v.23
no.4
/
pp.287-295
/
2021
As facilities such as dam reservoir wetlands and agricultural irrigation reservoir wetlands are built, sedimentation occurs over time through erosion, sedimentation transport, and sediment deposition. Sedimentation issues are very important for the maintenance of reservoir wetlands because long-term sedimentation of sediments affects flood and drought control functions. However, research on resignation has been estimated mainly by empirical formulas due to the lack of available data. The purpose of this study was to calculate and compare the sediment deposition rate by developing a multiple regression model along with actual data and empirical formulas. In addition, it was attempted to identify potential causes of collapse by applying it to 64 reservoir wetlands that suffered flood damage due to the long rainy season in 2020 due to reservoir wetland sedimentation and aging. For the target reservoir, 10 locations including the GaGog reservoir located in Miryang city, Gyeongsangnam province in South Korea, where there is actual survey information, were selected. A multiple regression model was developed in consideration of physical and climatic characteristics, and a total of four empirical formulas and sediment deposition rate were calculated. Using this, the error of the sediment deposition rate was compared. As a result of calculating the sediment deposition rate using the multiple regression model, the error was the lowest from 0.21(m3km2/yr) to 2.13(m3km2/yr). Therefore, based on the sediment deposition rate estimated by the multi-regression model, the change in the available capacity of reservoir wetlands was analyzed, and the effective storage capacity was found to have decreased from 0.21(%) to 16.56(%). In addition, the sediment deposition rate of the reservoir where the overflow damage occurred was relatively higher than that of the reservoir where the piping damage occurred. In other words, accumulating sediment deposition rate at the bottom of the reservoir would result in a lack of acceptable effective water capacity and reduced reservoir flood and drought control capabilities, resulting in reservoir collapse damage.
Kim, Ji Yung;Kim, Moon Ju;Jo, Hyun Wook;Lee, Bae Hun;Jo, Mu Hwan;Kim, Byong Wan;Sung, Kyung Il
Journal of The Korean Society of Grassland and Forage Science
/
v.41
no.1
/
pp.47-55
/
2021
The objective of this study was to access the effect of climate and soil factors on alfalfa dry matter yield (DMY) by the contribution through constructing the yield prediction model in a general linear model considering climate and soil physical variables. The processes of constructing the yield prediction model for alfalfa was performed in sequence of data collection of alfalfa yield, meteorological and soil, preparation, statistical analysis, and model construction. The alfalfa yield prediction model used a multiple regression analysis to select the climate variables which are quantitative data and a general linear model considering the selected climate variables and soil physical variables which are qualitative data. As a result, the growth degree days(GDD) and growing days(GD), and the clay content(CC) were selected as the climate and soil physical variables that affect alfalfa DMY, respectively. The contributions of climate and soil factors affecting alfalfa DMY were 32% (GDD, 21%, GD 11%) and 63%, respectively. Therefore, this study indicates that the soil factor more contributes to alfalfa DMY than climate factor. However, for examming the correct contribution, the factors such as other climate and soil factors, and the cultivation technology factors which were not treated in this study should be considered as a factor in the model for future study.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.