• Title/Summary/Keyword: 다이폴 안테나

Search Result 308, Processing Time 0.019 seconds

Antenna Factor Characteristics of EMI Dipole Antennas with Coaxial Cable Balun for Frequencies between 30 and 1,000 MHz (동축 케이블 밸런이 부착된 30~1,000 MHz 대역용 EMI 다이폴 안테나의 안테나 인자 특성)

  • Ju Chang-Hyun;Kim Ki-Chai
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.7 s.110
    • /
    • pp.623-628
    • /
    • 2006
  • This paper presents the characteristics of an antenna factor of two kinds of EMI dipole antennas with a coaxial cable balun used in the frequency range between 30 and 1,000 MHz. The integral equation for unknown current distribution is solved by the Galerkin's method of moments with piecewise sinusoidal functions. An antenna factor for EMI dipole antennas with the coaxial cable balun is derived by using the power loss concepts. We can realize two kinds of EMI dipole antennas with appropriate antenna factors in the frequency range from 30 to 1,000 MHz: 150-cm dipole length($30{\sim}300 MHz$) and 30cm dipole length($300{\sim}1,000 MHz$). To check th ε validity of the theoretical analysis, the complex antenna factor was measured using by reference antenna methods. It is shown that the calculated complex antenna factor is good agreement with experimental results.

Design of dipole Antenna using Split Ring Resonator(SRR) (분할고리공진기를 이용한 다이폴 안테나 설계)

  • Yu, Dong-gyun;Kim, Yong-seong;Lim, Yong-seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.526-528
    • /
    • 2018
  • This paper proposes a small, flexible dipole antenna for wireless power transmission of smart devices in a Wi-Fi environment. The proposed antenna is a mini-dipolar antenna structure with a split ring resonator in the center and is a small dipole antenna with a size of 32mm. The split ring resonator dipole antenna showed a reduction of about 20% compared to the same size of the dipole antenna.

  • PDF

Miniaturized Design of Log-Periodic Dipole Array Antenna Using Half-Bowtie Dipole Elements (반-보우타이 모양 다이폴 소자를 이용한 대수-주기 다이폴 배열 안테나의 소형화 설계)

  • Yeo, Junho;Lee, Jong-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.6
    • /
    • pp.1057-1062
    • /
    • 2016
  • In this paper, a design method for a compact log-perio dic half-bow-tie dipole array antenna for an operation in a UWB band(3.1-10.6 GHz) is studied. The proposed antenna is miniaturized by using half-bow-tie shaped dipole elements instead of strip-type dipole elements, which are commonly used in a general log-periodic dipole array(LPDA) antenna, and by reducing the element spacing. The effects of the flare angle of the half-bow-tie elements and the spacing factor on input reflection coefficient and realized gain characteristics of the proposed log-periodic antenna are analyzed. The optimized antenna is fabricated on an FR4 substrate, and the experiment results show that the antenna has a frequency band of 2.95-11.31 GHz for a VSWR < 2, which assures the operation in the UWB band. In addition, the length and width of the proposed antenna are reduced to 32.1 % and 18.3 %, respectively, compared to the LPDA antenna.

A Reconfigurable Antenna for Alternative Operation between Disk-Loaded Dipole and Folded Dipole (Disk-Loaded 다이폴과 Folded 다이폴로 동작하는 Reconfigurable 안테나)

  • Park, Seul-Gi;Jeong, Geun-Seok;Choo, Ho-Sung;Oh, Yi-Sok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.12
    • /
    • pp.1327-1336
    • /
    • 2007
  • In this paper, we propose a reconfigurable antenna which operates as a disk-loaded dipole antenna and a folded dipole antenna alternatively using RF on/off switches. The antenna can change its effective length to achieve dual-band operation; operates as the folded dipole antenna for stepping up the radiation resistance in low frequency band of $20{\sim}300$ MHz, and as the disk-loaded dipole antenna for an omni-directional radiation pattern (horizontal plane) and a donut-shaped radiation pattern (vertical plane) in high frequency band of $300{\sim}1.3$ GHz. In the low band, the proposed antenna shows higher gain than a conventional dipole antenna with a reduced antenna size. In the high band, the antenna maintains a broad beamwidth of about $80^{\circ}$, thus the antenna can be applicable to antennas for direction finding applications.

The Design of Wideband Dipole Antenna using Four Rings (4개의 링 구조를 사용한 광대역 다이폴 안테나 설계)

  • Kim, Sang-Uk;Lee, Woon-Jong;Oh, Su-Hyun;Lee, Cheon-Hee;Park, Hyo-Dal
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.5
    • /
    • pp.53-59
    • /
    • 2011
  • In this paper wideband dipole antenna that is usable as PCS/WCDMA/WiBro/WiMax public relay station antenna is proposed. The proposed antenna that designed by using double ring structure improves bandwidth performance of existing dipole antenna to wideband performance. To verify wideband performance and isotropic radiation pattern of the proposed antenna, simulation and fabrication have progressed its radiation characteristic has measured and then compared with calculated result. Measured result is similar to calculated result and has gain of 2dB VSWR of 2:1 over 1.75~3GHz. It is considered that the dipole antenna that designed in this paper can be usable as PCS/WCDMA/WiBro/WiMax public relay station antenna.

Theoretical Antenna Factors for a Cylinderical Dipole Antenna Using Moment Methods (모멘트 법을 적용한 다이폴 안테나의 안테나 인자)

  • 김기철;정연춘;정낙삼
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.1 no.1
    • /
    • pp.28-34
    • /
    • 1990
  • In this paper we discussed the theoretical antenna factor of a cylinderical dipole antenna. The Current distribution on a dipole antenna was analyzed by the method of moment, and this solu- tion is used for calculating the effective length and antenna factor of the half-wave dipole in free space.

  • PDF

A Study on the Characteristic of Modified Folded Dipole Antenna (변형된 Folded 다이폴 안테나의 특성 연구)

  • 심재륜
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.472-474
    • /
    • 2004
  • In this study, we investigated the characteristics of the input impedance and the gain of a ‘Folded dipole antenna with stub’ by the Method of Moments. The center frequency in this study is 200MHz, the radius of wire is 0.5nm, and the distance between two linear dipoles is 2cm. The inside variation of stub length within 18cm and the outside variation of stub length 4.5cm ive the value of SWR(Standing Wave Ratio) within 3. This means that the impedance matching between the ‘Folded dipole antenna with stub’ and receiver can easily be performed without a supplementary matching circuit.

  • PDF

Design of Planar Dipole Pair Antenna for Indoor Digital TV Reception (실내 디지털 TV 수신용 평면 다이폴 쌍 안테나 설계)

  • Lee, Jong-Ig;Yeo, Junho;Han, Dae-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.11
    • /
    • pp.2600-2606
    • /
    • 2014
  • In this paper, a design method for a planar dipole pair antenna for an operation in the frequency band of 470-806 MHz for terrestrial indoor digital TV (DTV) is studied. The proposed antenna is composed of two planar dipoles connected through conducting strips, and the antenna is fed by a microstrip line. By employing different lengths of dipoles, a broadband characteristics is obtained, and the antenna is size-reduced by bending both ends of the longer dipole. The effects of design parameters on the antenna performance are examined by simulation, and the parameters are adjusted for terrestrial DTV band use. A prototype of the antenna for indoor DTV reception is fabricated on an FR4 substrate with a size of $240mm{\times}139.5mm$ and tested experimentally. The experiment results show that the frequency band for a VSWR < 2 ranges 458-864 MHz(61.4%), and it corresponds fairly well with the simulated band of 448-868 MHz(63.8%).

Compact UWB Log Periodic Right Triangle-Shaped Dipole Array Antenna Appended With Strips (스트립이 추가된 소형 UWB 대수 주기 직각 삼각형-모양 다이폴 배열 안테나)

  • Yeo, Junho;Lee, Jong-Ig
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.5
    • /
    • pp.344-349
    • /
    • 2022
  • A compact LPDA antenna consisting of right triangle-shaped dipole elements appended with strips is proposed for UWB applications. First, right triangle-shaped dipole elements are used instead of conventional strip dipole elements to reduce the width of the LPDA antenna. Second, the spacing between the LPDA elements is decreased to reduce the length of the LPDA antenna. Finally, strips are appended at the ends of the right triangle-shaped dipole elements in order to further reduce the width of the antenna. A prototype of the proposed antenna with 16 elements and gain > 4 dBi is fabricated on an FR4 substrate with dimensions of 44 mm×30 mm. Measured frequency band of the fabricated antenna is 2.99-14.76 GHz for a VSWR < 2, which ensures UWB operation, and measured gain range is 4.0-5.5 dBi with a front-to-back ratio larger than 10 dB. The length and width of the proposed compact LPDA antenna are reduced by 40.9% and 20.6%, respectively, compared to the conventional LPDA.

Printed Dipole Antenna Fed by Broadsided Coupled Stripline for Wideband (측면 결합 스트립 선로를 이용한 광대역 프린트 다이폴 안테나)

  • Seung-Yeop, Rhee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1033-1038
    • /
    • 2022
  • In this paper, the design of a printed dipole antenna fed by broadside coupled striplines (BCS) for the 3.5GHz band is described. The two fins of the bow tie are, respectively, on the two sides of the substrate. The feeding balanced lines adopted for 1×2 array are the BCS. The obtained numerical results are in good agreement with experimental data. Through experiments with printed dipole antennas of various extended angles, the printed dipole antenna exhibits the wide bandwidth in the desired frequency band, which has a bandwidth of 28% for VSWR < 2.0 : 1. And within this bandwidth, This printed dipole antenna achieves a stable radiation pattern. It is found that the narrow band and feeding for array characteristic which is a disadvantage of the conventional printed dipole antenna can be improved. The radiation pattern showed omnidirectional characteristics and the maximum gain was about 4.4dBi.