• Title/Summary/Keyword: 다이캐스팅

Search Result 186, Processing Time 0.021 seconds

A Scheme of Preventing Product Shortage for Die Casting Scheduling (다이캐스팅 스케줄링의 결품 방지 기법)

  • Park, Yong-Kuk;Yang, Jung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1565-1574
    • /
    • 2011
  • Scheduling of die casting is a procedure of determining quantities of cast products so as to optimize a predetermined performance criterion. This paper presents a novel scheme of preventing product shortage raised by defective castings when die casting scheduling is applied to real casting operations. The previously developed linear programming (LP) model for die casting scheduling maximizes the average efficiency of melting furnaces in regard of the usage of molten alloy. However, the LP model is not able to cope with the problem of defective products occurring in the casting process. The proposed scheme is that whenever defective products are found in a shift, the foundryman produces additional cast products using the residue of molten alloy left at the end of the next shift. Neither the calculated amount of molten alloy nor the scheduling result of the LP model does not have to be altered for this method. The simulation result demonstrates the superiority and applicability of the newly proposed scheme.

Scheduling of Die Casting Processes Considering Power Usage (전력 사용을 고려한 다이캐스팅 공정의 스케줄링)

  • Yang, Jung-Min;Park, Yong-Kuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3358-3365
    • /
    • 2012
  • This paper presents a scheduling scheme for die casting processes considering power usage. The scheduling problem of a shift-based die casting process is represented by a linear programming (LP) model that maximizes the average efficiency of melting furnaces in regard of the usage of molten alloy, where the product quantities of each shift are used as primary variables. In this research, we propose a novel LP model that considers power usage of foundries. The developed LP model can derive product plans in which the expended power of a casting shift does not exceed a prescribed limit, while optimizing the efficiency of alloy usage. The simulation result of a case study demonstrates the superiority and applicability of the proposed scheme. This paper serves as a basic research on the role of foundries as an intelligent costumer in smart grid environment where the limit of power usage should be fulfilled.

Evaluation of Micro-defects and Air Tightness of Al Die-casting by Impregnation of Organic Solvent (유기용제 함침법을 통한 알루미늄 다이캐스팅의 미세결함 및 기밀성 평가)

  • Lee, Jin-Wook;Cho, Chang-hyun;Kim, Sung-Gye;Ko, Young-Gun;Kim, Dong-Ju
    • Journal of Korea Foundry Society
    • /
    • v.42 no.4
    • /
    • pp.218-225
    • /
    • 2022
  • For hydrogen-vehicle applications (air pressure control valve housing, APCVH), an investigation was conducted to determine how micro-defects in a high- pressure die-casted Al alloy (industrial code: ALDC12) could be controlled by means of a post-treatment using an organic-based impregnation solution in order to improve the air- tightness of the die-casted Al sample. Two different impregnation solutions were proposed and its test results were compared to a imported product from Japan with respect to the processing variables used. A structural investigation of the components under study was conducted by means of computer tomography and 3D X-ray micro-CT. These observations revealed that the use of the impregnation treatment to seal micro-defects led to highly significant and beneficial changes which were attributed mainly to interconnections among inherent micro-pores. A leak test after impregnation revealed that the performance improvement rate of the die-casted Al sample was ~70% for INNO-01. Therefore, the developed impregnation solutions offer an effective strategy to control the micro-defects found in various vehicle parts via die-casting.