• Title/Summary/Keyword: 다이아프램이 없는 접합부

Search Result 4, Processing Time 0.016 seconds

The Structural Behavior of CFCT Column to H-Beam Connections With Longitudinal Rib of Column at Joint (종리브로 보강한 콘크리트충전원형강관기둥-H형강보 접합부의 구조적 거동에 관한 연구)

  • Kang, Hyun Sik;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.2 s.35
    • /
    • pp.291-301
    • /
    • 1998
  • This paper is a study on the structural behavior of CFCT(Concrete-Filled Circular Tubular) column to H-beam connections with longitudinal rib. The important parameters are being longitudinal rib or not. variable column thickness(5.8mm. 9.2mm. 12.0mm. 15.0mm) around the joint between CFCT and H-beam and the width of flange to diameter. Test results are summarized for the strength, initial stiffness, failure mode and energy absorption capacities of each specimen. These are compared with the theoretical results(Yield line theory, numerical analysis). Therefore, the purpose of this paper is to investigate the stiffness and the strength of connections to evaluate the structural behavior of the CFCT column to H-beam connections with longitudinal rib.

  • PDF

Estimation of the Local Load-Carrying Capacities of CFCT Column to H-Beam Connections by Yield Line Model -With regard to the Tensile side of Beam flange- (인장측 보플랜지의 항복선 모델을 이용한 CFCT기둥-H형강보 접합부의 국부내력평가)

  • Kang, Hyun Sik;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.525-536
    • /
    • 1998
  • This paper is concerned with a theoretical study on the local load-carrying capacities of Concrete-Filled Circular Tubular(CFCT) column to H-beam connections by yield line theory. In this paper, the three cases which are assumed the yield line are involved. The first model is a simplified yield line model. The second model is modified by x and kx factors. The last one is a Morita's model. The local load-carrying capacities of CFCT column to H-beam connections has been studied both experimentally and theoretically using the yield line theory. The purpose of this paper is to suggest the basic data for developing the non-diaphragm connection.

  • PDF

Experimental Study on the Structural Behavior of Concrete-Filled Circular Tubular Column to H-Beam connections without Diaphragm (다이아프램이 없는 콘크리트 충전 원형강관 기둥-H형강 보 접합부의 구조적 거동에 관한 실험적 연구)

  • Kang, Hyun Sik;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.1 s.30
    • /
    • pp.13-22
    • /
    • 1997
  • This paper is concerned with an experimental study on structural behavior of Concrete-Filled Circular Tubular(CFCT) column to H-beam connections. The important parameters are the number of inner reinforced rib and the width of H-beam flange(100, 150, 200mm) with variable column thickness(5.8mm, 9.2mm, 12.5mm) around the joint between CFCT and H-beam. Test results are summarized for the displacement, strength, initial stiffness, failure mode and energy absorption capacity of each specimen. The purpose of this paper is to investigate the initial stiffness and the strength of connections to evaluate the structural behavior of the CFCT column to H-beam connections. From the discussion about the test results, the basic data for non diaphragm connection design would be suggested.

  • PDF

Evaluation of Static Behaviour of Orthotropic Steel Deck Considering the Loading Patterns (하중재하 패턴을 고려한 강바닥판의 정적거동 평가)

  • Kim, Seok Tae;Huh, Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.98-106
    • /
    • 2011
  • The deck of steel box girder bridges is composed of deck plate, longitudinal rib, and transverse ribs. The orthotropic steel decks have high possibility to fatigue damage due to numbers of welded connection part, the heavy contact loadings, and the increase of repeated loadings. Generally, the local stress by the repeated loadings of heavy vehicles causes the orthotropic steel deck bridge to fatigue cracks. The increase of traffic volume and heavy vehicle loadings are promoted the possibility of fatigue cracks. Thus, it is important to exactly evaluate the structural behavior of bridge considering the contact loading area of heavy vehicles and real load patterns of heavy trucks which have effects on the bridge. This study estimated the effect of contact area of design loads and real traffic vehicles through the finite element analysis considering the real loading conditions. The finite element analysis carried out 4 cases of loading patterns in the orthotropic steel deck bridge. Also, analysis estimated the influence of contact area of real truck loadings by the existence of diaphragm plate. The result of finite element analysis indicated that single tire loadings of real trucks occurred higher local stress than one of design loadings, and especially the deck plate got the most influence by the single tire loading. It was found that the diaphragm attachment at joint part of longitudinal ribs and transverse ribs had no effects on the improvement of structural performance against fatigue resistance in elastic analysis.