• 제목/요약/키워드: 다이아몬드 터닝 머시인

검색결과 5건 처리시간 0.019초

다이아몬드 터닝의 미세 절삭력 측정을 위한 tool holder 설계 및 절삭력 측정 (Tool Holder Design and Cutting Force Measurement of Diamond Turning Process)

  • 정상화;김상석;도철진;홍권희;김건희;유병주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.507-512
    • /
    • 2001
  • In this work, tool holder system has been designed and builted to measure cutting forces in diamond turning. This system design includes a 3-component piezo-electric tranducer. Initial experiments with tool holder system included verification of its predicted dynamic characteristics as well as a detailed study of cutting parameters. Tool holder system is modeled by considering the element dividing, material properties, and boundary conditions using MSC/PATRAN. Mode and frequency analysis of structure is simulated by MSC/NASTRAN, for the purpose of developing the effective design. Many cutting experiments have been conducted on 6061-T6 aluminum. Tests have involved investigation of velocity effects, and the effects of depth and feedrate on tool force. Forces generally increase with increasing depth of cut. Increasing feedrate does not necessarily lead to higher forces.

  • PDF

다이아몬드 터닝 가공에서의 비철금속에 대한 미세절삭력 특성 연구 (A Study on Cutting Force Characteristics of Non-ferrous steel in Diamond Turning Process)

  • 정상화;김상석;차경래;김현욱;나윤철;홍권희;김건희;김효식
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 추계학술대회(한국공작기계학회)
    • /
    • pp.38-42
    • /
    • 2001
  • A complete quantitative understanding of DT has been difficult because the process represents such a broad field of research. The experimental measurement of tool force is a single area of DT which still covers a wide range of possibilities. There are numerous parameters of the process which affect cutting forces. There are also many turnable materials of current interest. To obtain information toward a better understanding of the process, a few cutting parameters and materials were selected for detail study. It was decided that free-oxygen copper and 6061-T6 alloy aluminum would be the primary test materials. There are materials which other workers have also used because of there wide use in reflective applications. The experimental phase of the research project began by designing tests to isolate certain cutting parameters. The parameters chosen to study were those that affected the cross-sectional area of the uncut chip. The specific parameters which cause this area to vary are the depth of cut and infeed per revolution, or feedrates. Other parameter such a tool nose radius and surface roughness were investigated as they became relevant to the research.

  • PDF

다이아몬드 터닝 가공공정에서의 미세절삭력 특성 연구 (A Study on Cutting Force Characteristics in Diamond Turning Process)

  • 정상화;김상석;차경래;김건희;김근홍
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.957-960
    • /
    • 1997
  • A complete quantitative understanding of DT has been difficult because the process represents such s broad field of research. The experimental measurement of tool force is a single area of DT which still covers a wide range of possibilities. Here are numerous parameters of the process which affect cutting forces. There are also many turnable materials of current interest. To obtain information toward a better understanding of the process, a few cutting parameters and materials were selected for detail study. It was decided that free-oxygen copper and 6061-T6 alloy aluminum would be the primary test materials. There are materials which other workers have also used because of there wide use in reflective applications. The experimental phase of the research project began by designing tests to isolate certain cutting parameters. The parameters chosen to study were those that affected the cross-sectional area of the uncut chip. The specific parameters which cause this area to vary are the depth of cut and infeed per revolution, or feedrates. Other parameter such a tool nose radius and surface roughness were investigated as they became relevant to the research.

  • PDF

어드미턴스 모델을 이용한 다이아몬드 터닝머시인의 초정밀진동제어 (Admittance Model-Based Nanodynamic Control of Diamond Turning Machine)

  • 정상화;김상석
    • 한국정밀공학회지
    • /
    • 제13권10호
    • /
    • pp.154-160
    • /
    • 1996
  • The control of diamond turning is usually achieved through a laser-interferometer feedback of slide position. The limitation of this control scheme is that the feedback signal does not account for additional dynamics of the tool post and the material removal process. If the tool post is rigid and the material removal process is relatively static, then such a non-collocated position feedback control scheme may surfice. However, as the accuracy requirement gets tighter and desired surface cnotours become more complex, the need for a direct tool-tip sensing becomes inevitable. The physical constraints of the machining process prohibit any reasonable implementation of a tool-tip motion measurement. It is proposed that the measured force normal to the face of the workpiece can be filtered through an appropriate admittance transfer function to result in the estimated dapth of cut. This can be compared to the desired depth of cut to generate the adjustment control action in additn to position feedback control. In this work, the design methodology on the admittance model-based control with a conventional controller is presented. The recursive least-squares algorithm with forgetting factor is proposed to identify the parameters and update the cutting process in real time. The normal cutting forces are measured to identify the cutting dynamics in the real diamond turning process using the precision dynamoneter. Based on the parameter estimation of cutting dynamics and the admitance model-based nanodynamic control scheme, simulation results are shown.

  • PDF

다이아몬드 터닝 머시인의 극초정밀 절삭공정에서의 시스템 규명 및 제어 (System identification and admittance model-based nanodynamic control of ultra-precision cutting process)

  • 정상화;김상석;오용훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1352-1355
    • /
    • 1996
  • The control of diamond turning is usually achieved through a laser-interferometer feedback of slide position. If the tool post is rigid and the material removal process is relatively static, then such a non-collocated position feedback control scheme may surface. However, as the accuracy requirement gets tighter and desired surface contours become more complex, the need for a direct tool-tip sensing becomes inevitable. The physical constraints of the machining process prohibit any reasonable implementation of a tool-tip motion measurement. It is proposed that the measured force normal to the face of the workpiece can be filtered through an appropriate admittance transfer function to result in the estimated depth of cut. This can be compared to the desired depth of cut to generate the adjustment control action in addition to position feedback control. In this work, the design methodology on the admittance model-based control with a conventional controller is presented. The recursive least-squares algorithm with forgetting factor is proposed to identify the parameters and update the cutting process in real time. The normal cutting forces are measured to identify the cutting dynamics in the real diamond turning process using the precision dynamometer. Based on the parameter estimation of cutting dynamics and the admittance model-based nanodynamic control scheme, simulation results are shown.

  • PDF