• Title/Summary/Keyword: 다이아그리드 구조 시스템

Search Result 17, Processing Time 0.026 seconds

Feasibility Evaluation of CHS Diagrid Systems for Low/Mid-Rise Building Structure (원형강관 다이아그리드 시스템의 중저층 건축구조물 적용 타당성 평가)

  • Gam, Sam-Do;Kim, Tae-Jin;Kwak, Jin-I
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.84-87
    • /
    • 2009
  • 본 논문에서는 최근 초고층 건축물에 많이 활용되어지는 기둥-가새 시스템인 다이아그리드 시스템을 활용하여 중저층 건축물에 적용가능성을 평가하였다. 본 시스템은 튜브구조의 형태로 횡력에 대한 저항력이 우수하며 중력하중과 황하중을 기초와 지반에 안전하게 하중을 전달한다. 다이아그리드는 경사기둥과 보를 반복적으로 삼각형 형태로 배치되어 중력하중을 받을 경우 수직부재는 압축력을 보는 인장력을 받게 된다. 경사기둥과 보를 연결하는 접합부는 H-형강으로 설계 시 제작이 복잡하고 외관이 좋지 않다. 하지만 원형강관을 사용 할 경우 복합하지 않은 형태로 설계가 가능하고 외관이 우수하기 때문에 외부에 노출이 가능해진다. 또한 원형강관은 개방형 단면 부재에 비해 압축좌굴과 비틀림에 대한 성능 등이 우수하여 구조적인 성능이 우수하다. 원형강관을 이용하여 다이아그리드 시스템이 고층 건축물 뿐만 아니라 중저층 건축물에도 적용 타당성을 검토하였으며 원형강관 접합부 설계는 한계상태설계법이 사용 된 KBC2008(안)을 이용하여 설계하였다.

  • PDF

Optimization Design Process of Diagrid Node for Tall buildings (초고층 다이아그리드 노드의 최적설계과정)

  • Kim, Sang-Dae;Bae, Jae-Hoon;Ju, Young-Kyu;Kim, Young-Ju;Kim, Do-Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.211-220
    • /
    • 2011
  • The diagrid structure is now one of the trends in tall-building structures. It is preferred not only because of its distinctive appearance but also because of its structural advantages. There are few diagrid buildings that actually exist, however, because of the nodes, which are difficult to make and cost too much. In this study, a node-type diagrid building material with a more efficient structure but with fewer diagrid nodes, fabricated using the finite element method, was proposed and validated via experimentation.

State-of-the-Art of Diagrid Structural Systems (Diagrid 구조시스템의 기술 현황 분석)

  • Han, Kyung-Soo;Jung, In-Yong;Ju, Young-Kyu;Kim, Sang-Dae
    • 한국방재학회:학술대회논문집
    • /
    • 2010.02a
    • /
    • pp.36-36
    • /
    • 2010
  • 본 연구에서는 다이아그리드 구조시스템의 기술 현황 동향을 파악, 분석하고 향후발전과제를 제시하였다. 비정형 건물을 표현하기에 적합한 구조 시스템인 다이아그리드의 개념 및 원리를 설명하고 높이, 유형, 지역별로 건물 적용사례를 살펴보았다. 또한 국내의 연구 동향을 변수별로 정리하여 추가적인 연구개발 사항을 파악하고 이를 위한 구체적인 방안을 제시하였다.

  • PDF

A Development of a Shape Optimization Design Techniques for the Diagrid Tapered Tall-Building (테이퍼드 다이아그리드 초고층 구조물의 형상 최적설계기법 개발)

  • Han, Sang-Eul;Lee, Han-Joo;Ryu, Jong-Hye;Jeong, So-Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.349-356
    • /
    • 2011
  • In this paper, the optimal diagrid angle of atypical tall buildings has been found using diagrid optimization technique which is based on parametric algorithm. A diagrid is a diagonal grid which can be seen among atypical tall buildings and structures which effectively resist horizontal and vertical direction loads. Therefore, it is also the objective of this studyto find the maximum stiffness of atypical tall buildings by optimizing diagrid angle. Moreover, this study touches on both cylindrical and tapered off cylindrical structures, as shown in the examples to check the compatibility of optimum diagrid angle, which effectively resists horizontal deformation on top by optimization algorithm.

Experimental Evaluation for Structural Performance of Diagrid BRB Structural System (Diagrid BRB의 실험적 구조성능 평가)

  • Lee, Jong-Hyock;Ju, Young-Kyu;Kim, Young-Ju;Kim, Sang-Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.3
    • /
    • pp.261-269
    • /
    • 2010
  • It is now possible to design buildings in various forms using a diagrid structural system, which is the one of the most useful structural systems. It is difficult to design and construct the connections, however, and the bucklings in braces weaken the seismic performance of structures. In this study, the initial stiffness, ductility, and energy-dissipated capacity of a diagrid and a diagrid BRB were evaluated via frame tests. The results of the cycling load tests showed that the diagrid BRB had better initial stiffness and ductility, and dissipated extra energy after the BRBs were yielded.

Characteristics of Building Structural System with IsoTruss® Grid (IsoTruss® 그리드를 적용한 건물구조시스템의 특성)

  • Kim, Tae-Heon;Kim, Young-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.737-742
    • /
    • 2017
  • Recently, unconventional high-rise building shapes have attracted attention as a landmark of metropolitan cities and the search for innovative building forms in architecture is ongoing. In this study, $Isotruss^{(R)}$ grid(ITG) used in smaller scale structures was applied to building structural systems and its structural performance was examined. The structural behavior of an ITG was compared with that of a diagrid structure as a reference structure. The stiffness-based design method of the diagrid system was used for the preliminary design stage of member sizing in an ITG. The structural design of 16, 32, and 48-story buildings was carried out for the two systems with the same size. The angle of the inclined columns for ITG and diagrid was $59^{\circ}$ and $68.2^{\circ}$, respectively. The lateral stiffness, steel tonnage of the exterior frame, axial strength ratio, story drift ratio, and natural frequency of the two systems were compared. Based on the analysis result of 6 buildings, the two systems had similar structural capacity; 93.3% and 88.7% of the lateral load was carried by the perimeter frame in the ITG system and diagrid system, respectively. This suggests that the ITG system is better in arranging core columns. Therefore, the proposed ITG system has not only a unique façade, but also substantial structural capacity equivalent to the existing system.

Seismic Behavior of Web-Continuous Diagrid Nodes (웨브 연속형 다이아그리드 노드의 이력 특성)

  • Jeong, In Yong;Kim, Young Ju;Ju, Young K;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.4
    • /
    • pp.375-384
    • /
    • 2009
  • The application of the diagrid structural system has increased of late, but cyclic loadings such as winds and earthquakes cannot be fully understood through only an analytical study due to the difficulty of considering its welding property. In this study, diagrid nodes that had been scaled down to 1/5 of their full sizes were tested to find out their structural behavior under seismic or wind loads. Four specimens were used with five parameters, including the welding method and the design details. Cyclic loading tests were carried out, where a tensile load was applied to one brace member and a compression load to the other. The major failure modes in the tests were only failure of bending with tensile stress and tension failure. The welding method and the design details had no effect on the initial stiffness and yielding stress but play a significant role in the failure mode and energy dissipation, respectively.

Evaluation of Seismic Performance Factors of Diagrid Structural System (다이아그리드 구조 시스템의 내진성능계수 평가)

  • Kim, Kyoung-Hwan;Ju, Young-Kyu;Kim, Sang-Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.3
    • /
    • pp.229-239
    • /
    • 2010
  • As a new structural system, the diagrid system resists both gravity and lateral loads with diagonal columns. In current seismic design provisions, however, the response modification factor for a new structural system is not provided yet. ATC-63 provides a new methodology for defining various seismic performance factors, including the response modification factor. ATC-63 includes the collapse margin ratio in modifying the response modification factor, which can vary with many structural systems. In this paper, a non-linear static analysis and a dynamic analysis were conducted for four different diagrid models with 4-to 36-story heights. From these analyses, the response modification factor of the diagrid system was evaluated.

Experimental Evaluation of Seismic Performance Factors for Tall Diagrid Structure (초고층 다이아 그리드 구조의 실험적 내진성능계수 평가)

  • Bae, Jae-Hoon;Ju, Young-Kyu;Kim, Young-Ju;Kim, Sang-Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.1
    • /
    • pp.75-85
    • /
    • 2010
  • A new freeform structure representing "Diagrid, Cantilevered, Tilted." which has been considered not only its distinctive appearance but also the structural advantages becomes one of the trends in tall building design. Especially in the Diagrid system, loads can be distributed through bracing frame so that it can be save the materials since it has more effective in the structure behavior. But the seismic performance index such as response modification factor is not clearly defined yet. Even though the diagrid is supposed to show higher seismic performance, it is underestimated due to the lack of reliable data. In this paper the response modification factor for the diagrid system is experimentally explored.

Sensitivity Analysis on the Lateral Behavior of Diagrid Structure (다이아그리드 구조 시스템의 횡적 거동에 대한 민감도 해석)

  • Ahn, Keun-Woo;Yang, Jae-Kwang;Park, Sung-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.73-82
    • /
    • 2015
  • In evaluating lateral behavior on the seismic and wind load, the purpose of sensitivity analysis is to find critical variables and to identify characteristic response with variability of variables. The sensitivity analysis is very important in structural diagnosis, repair and reinforcement field. This study investigates the sensitivity by linear static analysis applying the TDA method in changing angles of diagrid braces on the same height structures. In case of mid rise model, under the seismic load, the brace member is determined as a major variable at $58^{\circ}$ but a high rise model, under the wind load, has the brace member as a major variable at $67.4^{\circ}$. In addition, location of critical sensitivity on the mid rise model is distributed over middle section, while it is distributed lower section on the high rise model.