• Title/Summary/Keyword: 다이나모 평가

Search Result 21, Processing Time 0.027 seconds

Braking Force Test Evaluation Dynamometer Development of Vehicle (차량용 브레이크 제동력 평가 다이나모미터 개발)

  • Kwon, Byeong-Heon;Yoon, Pil-Hwon;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.56-65
    • /
    • 2019
  • Recently, automobiles have been developed for safety and environmental reasons. Particularly, awareness of automobile safety is changing significantly. As a result, safety systems developed by ADAS have emerged. However, the period of mass production through ADAS development and test evaluation is long. Therefore, in this paper, we develop a brake dynamometer to shorten the time required for ADAS development and test evaluation. In addition, the developed brake dynamometer satisfies the international standard JIS D-0210, and the user can evaluate the braking force by selecting test conditions and test method for each mode of ADAS. We use the ACC, LKAS, and AEB scenarios proposed in previous studies to verify the reliability of the developed brake dynamometer. The developed brake dynamometer was verified by comparing the test values and the calculated values using theoretical formulas of the proposed ADAS mode based on previous studies. In addition, it is expected that the performance evaluation of brake parts for each ADAS mode will be possible in an environment where the vehicle test of ADAS is not possible in the future.

Development of Helicopter Chassis Dynamometer System for the Scaled Helicopter Ground Test (축소 헬기 지상시험을 위한 헬리콥터 섀시다이나모미터 개발)

  • Kim, Ick-Tae;Kim, Jae-Soo
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.185-191
    • /
    • 2012
  • This paper developed Helicopter Chassis Dynamometer System(HCDS) to perform the bench test of the scaled rotor blade and to design a scaled model helicopter flight test bed and accomplished the scaled helicopter ground test. The scaled helicopter should be checked the relation of thrust and power input to maintain regular RPM by collective pitch angle versus throttle input. It showed hovering performance results of IGE with OGE, the max. F.M. was 0.76 without ground effect. The results of the chassis dynamometer test of scaled helicopter will usefully apply to design the scaled helicopter and evaluate the rotor blade performance.

Development of Electric Current Control Unit for Automobile Ignition Coil (자동차 점화코일 충전 전류제어 장치 개발)

  • Kim, Doo-Hyun;Choi, Seok-Won;Cho, Beom-Joon
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2012.05a
    • /
    • pp.156-157
    • /
    • 2012
  • 본 논문은 불꽃 점화 방식 엔진에서 차량의 주행상태에 따른 점화코일의 전류량을 측정하여 추가적인 전류를 공급하는 충전 전류제어 장치를 고안하였다. 점화 코일의 전류를 안정적으로 공급하고 과전류를 방지함으로써 차량 엔진의 출력 향상 및 효율적인 연소가 가능하도록 하였으며, 다이나모 장비를 이용하여 출력과 토크에 대한 성능평가를 하였다. 실험결과는 제안하는 장치의 유효성을 보여주었다.

  • PDF

Effect of Pad Structure and Friction Material Composition on Brake Squeal Noise (제동패드의 구조와 마찰재 조성이 제동 스킬소음에 미치는 영향)

  • Goo, Byeong Choon;Kim, Jae Chul;Lee, Beom Joo;Park, Hyoung Chul;Na, Sun Joo
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • Brake squeal noise has been a challenging problems for a long time. It is very annoying to passengers and residents near tracks. Two methods have been applied to reduce or eliminate brake squeal noise. One is to improve frictional materials; the other is to optimize the topology and structures of brake pads. In this study, we developed two kinds of brake pads; one is a pad whose frictional material is different from the KTX brake pad friction material; the other is a flexible pad that has the same frictional material as that of the KTX brake pad, but a different structure. Squeal noise and friction coefficients were measured and analyzed using a full-scale brake dynamometer. It was found that the dynamometer test can simulate the squeal noise of KTX trains at stations. The squeal frequency of the KTX at 4500Hz was exactly reproduced; this value of 4500Hz was one of the natural frequencies of the KTX brake disc. It was also found that the squeal noise depended on the caliper pressure, initial disc temperature and braking speed. The average friction coefficient was 0.35~0.45. The new pad lowered the squeal noise by 17.3~21.6dB(A).

The Studies on the Fabrication and Properties of Friction Materials toy Aluminium Alloy Disk (알루미늄 합금 디스크용 마찰재의 제조 및 그 특성에 관한 연구)

  • 손태관;장상희;제갈영순
    • Composites Research
    • /
    • v.16 no.4
    • /
    • pp.22-28
    • /
    • 2003
  • This article deals with the manufacture and test results of asbestos-free friction material for Aluminium at toy disk. In order to obtain optimum formulation, various formulations of fibres, matrix, modifiers, fillers, etc were designed and evaluated. The constant friction and brake dynamometer tests were performed to know weak and strong point for each friction material. The C21 formulation of various tested formulations exhibited superior friction constant(0.38∼38), fade rate (18%) by JASO C406 test mode and maximum wear 1.6 mm. disc wear 0.08 mm by JASO C427 test mode. The surface morphology of AL alloy disk(before and after test) was observed by Scanning Electron Microscope(SEM) and Image Analyzer.

Development of the Virtual Test Technology for Evaluating Thermal Performance of Disc Brake (브레이크 열적 성능 평가를 위한 Virtual Test 기술의 개발)

  • Choi, Bong-Keun;Park, Jong-Hyun;Kim, Mi-Ro;Ahn, Byung-Jae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.40-47
    • /
    • 2009
  • There are many kinds of simplifications and limitations in evaluating thermal performance of disc brake using the analytic technologies which were established before. But now new virtual test technology with several advanced analytic techniques is developed to evaluate the thermal performance without any possibility of great errors that used to happen for the time-consuming analysis. As a result, it was estimated that the virtual test technology could afford to replace the physical dynamo test since the reliability of virtual test technology was reasonably verified with the existing data measured in dynamo test.

The Braking Performance Evaluation of Al-MMC Brake Drum Using the Dynamometer (다아나모 실험을 통한 Al-MMC 브레이크 드럼의 제동성능 평가)

  • 윤영식;유승을;한범석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.733-736
    • /
    • 2002
  • This study was carried out to investigate the braking performances associated with the friction coefficients and temperature fluctuations. Friction coefficient stability and maximum temperature of brake drums, made of an Al-MMC and conventional cast iron, were tested by the inertial brake dynamometer during 15 braking operations. Also the temperature distribution was analyzed by the finite element analysis(FEA). In this experiment, both lower temperature rise near the drum surface and less variation of friction coefficient, compared to those of cast iron, were observed with Al-MMC drums during braking operations.

  • PDF

Study of Tribological Characteristics Between Metallic Friction Materials and Brake Disk (금속계 마찰재와 제동디스크 간의 마찰특성 연구)

  • Kim, Sang-Ho;Lee, Hi-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.1
    • /
    • pp.72-80
    • /
    • 2009
  • The tribiological characteristics such as friction coefficient, friction stability, wear rate and braking temperature between various types of metallic friction materials and heat resistant steel disk, were investigated by using lab-scale dynamometer. Friction materials for high speed train have higher friction coefficient and friction stability as compared to aircraft friction materials even though friction materials for high speed train have lower wear rate. In addition. Cu-matrix friction materials have higher temperature increase rate than Fe-matrix friction materials. All friction surfaces have Fe-base oxide layer after completing test.