• Title/Summary/Keyword: 다수 센서

Search Result 596, Processing Time 0.039 seconds

Enhancement of Spatial Resolution to Local Area for High Resolution Satellite Imagery (고해상도 위성영상을 위한 국소영역 공간해상도 향상 기법)

  • Kang, Ji-Yun;Kim, Ihn-Cheol;Kim, Jea-Hee;Park, Jong Won
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.137-143
    • /
    • 2013
  • The high resolution satellite images are used in many fields such as weather observation, remote sensing, military facilities monitoring, cultural properties protection etc. Although satellite images are obtained in same satellite imaging system, the satellite images are degraded depending on the condition of hardware(optical device, satellite operation altitude, image sensor, etc.). Due to the fact that changing the hardware of satellite imaging system is impossible for resolution enhancement of these degraded satellite after launching a satellite, therefore the method of resolution enhancement with satellite images is necessary. In this paper the resolution is enhances by using a Super Resolution(SR) algorithm. The SR algorithm is an algorithm to enhance the resolution of an image by uniting many low resolution images, so an output image has higher resolution than using other interpolation methods. But It is difficult to obtain many images of the same area. Therefore, to solve this problem, we applied SR after by applying the affine and projection transform. As a results, we found that the images applied SR after affine and projection transform have higher resolution than the images only applied SR.

Matching and Geometric Correction of Multi-Resolution Satellite SAR Images Using SURF Technique (SURF 기법을 활용한 위성 SAR 다중해상도 영상의 정합 및 기하보정)

  • Kim, Ah-Leum;Song, Jung-Hwan;Kang, Seo-Li;Lee, Woo-Kyung
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.4
    • /
    • pp.431-444
    • /
    • 2014
  • As applications of spaceborne SAR imagery are extended, there are increased demands for accurate registrations for better understanding and fusion of radar images. It becomes common to adopt multi-resolution SAR images to apply for wide area reconnaissance. Geometric correction of the SAR images can be performed by using satellite orbit and attitude information. However, the inherent errors of the SAR sensor's attitude and ground geographical data tend to cause geometric errors in the produced SAR image. These errors should be corrected when the SAR images are applied for multi-temporal analysis, change detection applications and image fusion with other sensor images. The undesirable ground registration errors can be corrected with respect to the true ground control points in order to produce complete SAR products. Speeded Up Robust Feature (SURF) technique is an efficient algorithm to extract ground control points from images but is considered to be inappropriate to apply to SAR images due to high speckle noises. In this paper, an attempt is made to apply SURF algorithm to SAR images for image registration and fusion. Matched points are extracted with respect to the varying parameters of Hessian and SURF matching thresholds, and the performance is analyzed by measuring the imaging matching accuracies. A number of performance measures concerning image registration are suggested to validate the use of SURF for spaceborne SAR images. Various simulations methodologies are suggested the validate the use of SURF for the geometric correction and image registrations and it is shown that a good choice of input parameters to the SURF algorithm should be made to apply for the spaceborne SAR images of moderate resolutions.

A Task Group-based Real-Time Scheduling Technique m the Non-Preemptive TinyOS (비선점 환경의 TinyOS에서 실시간성을 고려한 태스크 그룹 기반의 스케줄링 기법)

  • Son, Chi-Won;Tak, Sung-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.9
    • /
    • pp.1285-1298
    • /
    • 2010
  • Since the TinyOS incorporating a non-preemptive task scheduling policy uses a FIFO (First-In First-Out) queue, a task with the highest priority cannot preempt a task with lower priority before the task with lower priority must run to completion. Therefore, the non-preemptive TinyOS cannot guarantee the completion of real-time user tasks within their deadlines. Additionally, the non-preemptive TinyOS needs to meet the deadlines of user tasks as well as those of TinyOS platform tasks called by user tasks in order to guarantee the deadlines of the real-time services requested by user tasks. In this paper, we present a group-based real-time scheduling technique that makes it possible to guarantee the deadlines of real-time user tasks in the TinyOS incorporating a non-preemptive task scheduling policy. The proposed technique groups together a given user task and TinyOS platform tasks called and activated by the user task, and then schedule them as a virtual big task. A case study shows that the proposed technique yields efficient performance in terms of guaranteeing the completion of user tasks within their deadlines and aiming to provide them with good average response time, while maintaining the compatibility of the existing non-preemptive TinyOS platform.

The Design and Implementation of GSA(Grid System Account) for an Effective Analyzation of Enterprise Grid Computing system (Enterprise Grid Computing 시스템의 효율적 분석을 위한 GSA 시스템의 설계와 구현)

  • Chung, Moon-Ki
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.05a
    • /
    • pp.540-543
    • /
    • 2007
  • 최근의 그리드 컴퓨팅 시스템 환경은 단일 환경에서 작게는 2~4CPU, 많게는 수백 CPU 이상의 시스템으로 구축되고 있고, 더욱이 지역적으로도 멀리 떨어져 있다. 따라서 이를 운용하는 기업에서는 시스템의 사용 현황을 신속하게 분석할 필요가 있다. 그러나 이렇게 혼재된 이 기종 및 컴퓨팅 환경하에서의 각 지역별 시스템 사용현황을 효과적으로 분석 한다는 것은 매우 어려운 일이다. 기존에 사용되어 온 그리드 컴퓨팅 시스템 환경에서의 사용율 관리 방법들은 Queueing 시스템이 가지고 있는 Accounting 분석 명령어로 text 형태의 Accounting raw data 의 결과를 추출하여 가공 처리하므로 데이터 증가 시 반응 속도가 현격하게 느려지는 상황이 발생한다. 또한 원격지 그리드 컴퓨팅 시스템 군의 사용율 분석은 데이터 분석 시 매번 원격지접근 절차를 사용하여 그리드 컴퓨팅 시스템 군에 접근한 후 해당 로컬 시스템 분석을 해야 하고 각 원격지시스템군별로 추출 된 데이터를 통합 관리해야 하는 문제점을 가지고 있다. 따라서 이러한 문제점을 해결하고자 하는 것이 본 논문에서 제안하는 3-tier 구조의 GSA(Grid System Account)이다. 제안한 GSA 는 각 원격지 별 데이터를 객체화하여 Database 에 저장 함으로써 데이터 분석 시 효과적으로 처리할 수 있으며, 다수의 원격지 그리드 컴퓨팅 시스템 군에 대한 복합적인 분석이 필요할 때 효율적으로 대처할 수 있다. 본 논문에서는 GSA 의 설계방법을 제안하고 구현하여 실 성능을 시험함으로써 보다 효율적인 그리드 컴퓨팅 시스템의 사용율 분석 관리가 가능함을 보였다.포는 감수성을 보이지 않았다. 따라서 위의 결과로부터 SLT-I에 감수성을 보이지 않은 Raw264.7세포를 대상으로 Gb3 발현 정도와 SLT-I의 세포독성의 관계를 규명하고자 Gb3의 발현을 증가시킨 후 SLT-I의 세포독성을 재차 평가하였다. 이 결과 $TNF-{\alpha}$의 처리에 의하여 6 hrs에 Gb3의 발현이 정점(43.5%)에 이르렀으며 36 hrs에 정상 수준(25.0%)으로 환원되었다. 그러나, Gb3의 발현이 증가함에도 불구하고 SLT-I의 세포독성에는 변화가 관찰되지 않았다. 따라서, SLT-I에 의한 세포독성은 세포의 종류에 따라서 다르며 또한, Gb3의 발현정도에만 의존적이지는 않을 것으로 생각된다. 이와 같은 결과는 E. coli 0157의 감염증 병인 연구에 있어 SLT-I과 Gb3의 발현의 상관관계에 대한 보다 심도 있는 연구가 필요함을 시사한다.만 분할률, 배반포 형성률 및 배반포의 세포수를 증가시키는 것으로 사료된다.수의 유출입 지점에 온도센서를 부착하여 냉각수의 온도를 측정하고 냉각수의 공급량과 대기의 온도 등을 측정하여 대사열의 발생을 추정할 수 있었다. 동시에 이를 이용하여 유가배양시 기질을 공급하는 공정변수로 사용하였다 [8]. 생물학적인 폐수처리장치인 활성 슬러지법에서 미생물의 활성을 측정하는 방법은 아직 그다지 개발되어있지 않다. 본 연구에서는 슬러지의 주 구성원이 미생물인 점에 착안하여 침전시 슬러지층과 상등액의 온도차를 측정하여 대사열량의 발생량을 측정하고 슬러지의 활성을 측정할 수 있는 방법을 개발하였다.enin과 Rhaponticin의 작용(作用)에 의(依)한 것이며, 이

  • PDF

Persistent Scatterer Selection and Network Analysis for X-band PSInSAR (X-band PSInSAR를 위한 고정산란체 추출 및 네트워크 분석 기법)

  • Kim, Sang-Wan;Cho, Min-Ji
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.5
    • /
    • pp.521-534
    • /
    • 2011
  • The high-resolution X-band SAR systems such as COSMO-SkyMED and TerraSAR-X have been launched recently. In addition KOMPSAT-5 will be launched in the early of 2012. In this study we developed the new method for persistent scatterer candidate (PSC) selection and network construction, which is more suitable for PSInSAR analysis using multi-temporal X-band SAR data. PSC selection consists in two main steps: first, selection of initial PSCs based on amplitude dispersion index, mean amplitude, mean coherence. second, selection of final PSCs based on temporal coherence directly estimated from network analysis of initial PSCs. To increase the stability of network the Multi- TIN and complex network for non-urban area were addressed as well. The proposed algorithm was applied to twenty-one TerraSAR-X SAR of New Orleans. As a result many PSs were successfully extracted even in non-urban area. This research can be used as the practical application of KOMPSAT-5 for surface displacement monitoring using X-band PSInSAR.

Efficient FPGA Logic Design for Rotatory Vibration Data Acquisition (회전체 진동 데이터 획득을 위한 효율적인 FPGA 로직 설계)

  • Lee, Jung-Sik;Ryu, Deung-Ryeol
    • 전자공학회논문지 IE
    • /
    • v.47 no.4
    • /
    • pp.18-27
    • /
    • 2010
  • This paper is designed the efficient Data Acquisition System for an vibration of rotatory machines. The Data Acquisition System is consist of the analog logic having signal filer and amplifier, and digital logic with ADC, DSP, FPGA and FIFO memory. The vibration signal of rotatory machines acquired from sensors is controlled by the FPGA device through the analog logic and is saved to FIFO memory being converted analog to digital signal. The digital signal process is performed by the DSP using the vibration data in FIFO memory. The vibration factor of the rotatory machinery analysis and diagnosis is defined the RMS, Peak to Peak, average, GAP, FFT of vibration data and digital filtering by DSP, and is need to follow as being happened the event of vibration and make an application to an warning system. It takes time to process the several analysis step of all vibration data and the event follow, also special event. It should be continuously performed the data acquisition and the process, however during processing the input signal the DSP can not be performed to the acquisited data after then, also it will be lose the data at several channel. Therefore it is that the system uses efficiently the DSP and FPGA devices for reducing the data lose, it design to process a part of the signal data to FPGA from DSP in order to minimize the process time, and a process to parallel process system, as a result of design system it propose to method of faster process and more efficient data acquisition system by using DSP and FPGA than signal DSP system.

Infrared-based User Location Tracking System for Indoor Environments (적외선 기반 실내 사용자 위치 추적 시스템)

  • Jung, Seok-Min;Jung, Woo-Jin;Woo, Woon-Tack
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.5
    • /
    • pp.9-20
    • /
    • 2005
  • In this paper, we propose ubiTrack, a system which tracks users' location in indoor environments by employing infrared-based proximity method. Most of recently developed systems have focussed on performance and accuracy. For this reason, they adopted the idea of centralized management, which gathers all information in a main system to monitor users' location. However, these systems raise privacy concerns in ubiquitous computing environments where tons of sensors are seamlessly embedded into environments. In addition, centralized systems also need high computational power to support multiple users. The proposed ubiTrack is designed as a passive mobile architecture to relax privacy problems. Moreover, ubiTrack utilizes appropriate area as a unit to efficiently track users. To achieve this, ubiTrack overlaps each sensing area by utilizing the TDM (Time-Division Multiplexing) method. Additionally, ubiTrack exploits various filtering methods at each receiver and utilization module. The filtering methods minimize unexpected noise effect caused by external shock or intensity weakness of ID signal at the boundary of sensing area. ubiTrack can be applied not only to location-based applications but also to context-aware applications because of its associated module. This module is a part of middleware to support communication between heterogeneous applications or sensors in ubiquitous computing environments.

A Study on Improvement of Parking Guidance System to Low-Power Operation for Green Building

  • Lee, Jeong-Jun;Oh, Young-Tae;Lee, Choul-Ki;Yun, Il-Soo;Chung, Sang-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.3
    • /
    • pp.1-8
    • /
    • 2011
  • The parking guidance system can increase driver's convenience with detailed parking information service, but it continuously consumes electrical energy with large amount of sensors, displays and control modules. With the increase of the demand for green and sustainable building design, it becomes a meaningful issue for parking guidance system to reduce operating power. This paper presents the preliminary design and estimated results of a parking guidance system which is optimized to reduce the power consumption mainly on detectors and displays. The system design is based on commercial wireless parking detectors, wireless-loop-detector and earth-magnetic-detector. We have performed system architecture design, communication network design, parking information service scenario planning, battery life regulation and at last operating power estimation. With the 7 years of battery replace cycle, the estimated result for power consumption of designed system was 0.33W/slot, which is 13% of the traditional system's estimation result. The estimated annual maintain cost was similar to the traditional ultrasonic sensor based system's. The low power operable designed system can be expected to reduce CO2 emission.

Automated Algorithm for Super Resolution(SR) using Satellite Images (위성영상을 이용한 Super Resolution(SR)을 위한 자동화 알고리즘)

  • Lee, S-Ra-El;Ko, Kyung-Sik;Park, Jong-Won
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.2
    • /
    • pp.209-216
    • /
    • 2018
  • High-resolution satellite imagery is used in diverse fields such as meteorological observation, topography observation, remote sensing (RS), military facility monitoring and protection of cultural heritage. In satellite imagery, low-resolution imagery can take place depending on the conditions of hardware (e.g., optical system, satellite operation altitude, image sensor, etc.) even though the images were obtained from the same satellite imaging system. Once a satellite is launched, the adjustment of the imaging system cannot be done to improve the resolution of the degraded images. Therefore, there should be a way to improve resolution, using the satellite imagery. In this study, a super resolution (SR) algorithm was adopted to improve resolution, using such low-resolution satellite imagery. The SR algorithm is an algorithm which enhances image resolution by matching multiple low-resolution images. In satellite imagery, however, it is difficult to get several images on the same region. To take care of this problem, this study performed the SR algorithm by calibrating geometric changes on images after applying automatic extraction of feature points and projection transform. As a result, a clear edge was found just like the SR results in which feature points were manually obtained.

Development of Simulation Method to Design Rover's Camera System for Extreme Region Exploration (극한지 탐사 로버의 카메라 시스템 설계를 위한 시뮬레이션 기법 개발)

  • Kim, Changjae;Park, Jaemin;Choi, Kanghyuk;Shin, Hyu-Soung;Hong, Sungchul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.271-279
    • /
    • 2019
  • In extreme environment regions, unmanned rovers equipped with various sensors and devices are being developed for long-term exploration on behalf of humans. On the other hand, due to the harsh weather conditions and rough terrain, the rover camera has limited visible distance and field of view. Therefore, the rover cameras should be located for safe navigation and efficient terrain mapping. In this regard, to minimize the cost and time to manufacture the camera system on a rover, the simulation method using the rover design is presented to optimize the camera locations on the rover efficiently. In the simulation, a simulated terrain was taken from cameras with different locations and angles. The visible distance and overlapped extent of camera images, and terrain data accuracy calculated from the simulation were compared to determine the optimal locations of the rover's cameras. The simulated results will be used to manufacture a rover and camera system. In addition, self and system calibrations will be conducted to calculate the accurate position of the camera system on the rover.