심전도 신호는 기본적으로 심장의 전기적 활동에 포함되며 이를 통해 심박수 측정, 심장 박동의 리듬 검사, 심장 이상 진단, 정서 인식 및 생체 인식과 같은 다양한 목적으로 분석 및 활용된다. 본 논문의 목적은 다차원 데이터 배열인 텐서 특성을 가진 다선형 판별분석(MLDA: Multilinear Linear Discriminant Analysis) 기법을 이용하여 개인식별을 수행하고자 한다. MLDA는 상위 차원의 텐서를 포함하는 분류 문제에 대해서 차원 문제를 해결 할 수 있으며, 상호 연관된 부분 공간은 서로 다른 클래스를 구별하기 위해 사용될 수 있다. 제시된 방법의 성능을 검증하기 위해 Physionet의 MIT-BIH데이터베이스를 적용하였다. 이 데이터베이스에 대해 실험한 결과, MLDA는 기존 PCA와 LDA와 비교하여 개인식별 성능이 우수함을 확인하였다.
본 논문에서는 마이크로어레이 (microarray) 자료에 판별분석을 적용 시 나타나는 고차원 및 소표본 문제의 해결방법으로서 직교요인을 새로운 특징변수로 사용한 비모수적 국소선형 로지스틱 판별분석을 제안한다. 제안된 방법은 국소우도에 기반한 것으로서 다범주 판별분석에 적용될 수 있으며, 고려된 직교인자는 주성분 요인, 부분최소제곱 요인, 인자분석 요인 등이다. 대표적인 두 가지 실제 마이크로어레이 자료에 적용한 결과 직교요인들 중에서 부분최소제곱 요인을 특징변수로 사용한 경우 고전적인 통계적 판별분석보다 향상된 분류 능력을 나타내고 있음을 확인하였다.
상수도 관망은 국가 수도 시설의 주요한 구성 요소이지만 대부분이 지중에 매립되어 있어 배관의 노후화 정도 및 누수를 파악하기 어려우므로 유지관리 하기가 매우 어렵다. 본 연구에서는 관망에 설치된 다양한 센서 조합을 가정하여, 데이터 조합에 따른 관로 누수 판별 가능성을 검토하기 위하여 선형회귀분석, 뉴로퍼지 등의 인공지능 알고리즘을 통한 유량과 압력 예측을 실시하여 최적 알고리즘을 도출하였다. 공급압력 예측을 통한 누수판별의 경우 뉴로퍼지 알고리즘이 선형회귀분석에 비하여 우수하였다. 누수유량 예측에서는 뉴로퍼지를 이용한 유량예측이 우선 고려되어야 한다. 다만, 유량을 모사하기 힘든 경우에는 선형 알고리즘을 이용한 공급압력 예측이 이루어져야 할 것으로 사료 된다.
본 논문에서는 사람의 얼굴표정과 음성 속에 담긴 6개의 기본감정(기쁨, 슬픔, 화남, 놀람, 혐오, 공포)에 대한 특징을 추출하고 인식하고자 한다. 이를 위해 얼굴표정을 이용한 감정인식에서는 이산 웨이블렛 기반 다해상도 분석을 이용하여 선형판별분석기법으로 특징을 추출하고 최소 거리 분류 방법을 이용하여 감정을 인식한다. 음성에서의 감정인식은 웨이블렛 필터뱅크를 이용하여 독립적인 감정을 확인한 후 다중의사 결정 기법에 외해 감정인식을 한다. 최종적으로 얼굴 표정에서의 감정인식과 음성에서의 감정인식을 융합하는 단계로 퍼지 소속함수를 이용하며, 각 감정에 대하여 소속도로 표현된 매칭 감은 얼굴에서의 감정과 음성에서의 감정별로 더하고 그중 가장 큰 값을 인식 대상의 감정으로 선정한다.
한국에서 만성위염은 10명당 한 명 꼴로 발생하는 질병이다. 만성위염을 진단하기 위해서 일반적으로 내시경 검사를 하지만 이는 환자에게 고통을 주고 비용이 비싸다는 단점을 가지고 있다. 한편 비침습적이고 저비용인 전통한방의학의 맥진에 따르면, 오른쪽 손목의 '관' 위치에서 비위의 기능적 이상을 진단할 수 있다. 본 연구에서는, 전통한방의학의 견해에 따라 오른쪽 손목 '관' 부위의 맥파를 분석하여 만성위염 판별모델을 개발하였다. 모델의 판별률을 비교하기 위해, 피크-밸리 검출법과 가우시안 모델을 적용한 상이한 방법의 특징점 추출방법에 대해 선형판별분석 기법과 로지스틱 회귀분석법을 적용해 보았다. 그 결과, 판별모델과 특징점 추출 방법에 따라 77%~89%의 민감도와 72%~83%의 특이도를 보였고 각 모델의 평균 판별률은 약 80% 내외로 얻어졌다. 구체적으로, 가우시안 모델이 상대적으로 우수한 민감도(89.1%와 87.5%)를 보인 반면, 피크-밸리 검출법은 우수한 특이도(82.8%와 81.3%)를 보였고, 평균적인 판별률에 있어서는 가우시안 모델이 1.2% 정로 앞섰다(80.9% vs 79.7%). 결론적으로, 전통의학적 맥진원리에 기반한 요골동맥 맥파의 특성을 이용하여 유의미한 만성위염 판별모델을 얻을 수 있었고, 민감도에 있어서 가우시안 모델이 더 우수하였고, 특이도에 있어서 피크-밸리 검출법이 더 우수하였다.
본 연구는 다변량 기법을 도입하여 치아 크기의 다양성을 고려하면서 정확성이 높은 혼합치 열기 분석법을 개발하기 위해 시행되었다. 견치 및 소구치 크기를 예측하는 데 이용된 변수는 상악 중절치, 상악 제1대구치, 하악 중절치, 하악 측절치 및 하악 제1대구치로서 총 5개 치아 크기 변수가 이용되었다. 우선 정상교합자 연구 표본 307명을 5개 치아 변수를 이용하여 k-means 군집 분석으로 치아 크기에 따라 나눈 후 판별식을 이용, 치아 크기가 큰 그룹과 작은 그룹으로 분류하였다. 이후 견치와 소구치 크기의 합을 예측하기 위하여 남녀별, 상하악별, 치아 크기 그룹별로 다중선형 분석을 이용하여 회귀식을 구했다. 검증 표본에는 504명의 부정교합자가 이용되었으며, 이들에 대하여 정상교합자로부터 도출된 판별식을 이용하여 2그룹으로 할당한 후 정상교합자로부터 도출된 회귀식을 이용하여 상악과 하악의 견치 및 소구치 크기 합을 예측하였다. 오차 분석 결과 정상교합자는 최대 0.71, 부정교합자 검증표본은 최대 0.82 mm의 residual standard deviation 값을 보였다. 부정교합 분류별, 치아 크기 패턴별로 예측 오차의 유의한 차이는 없었다. 1 mm 및 2 mm 이상의 예측 오차를 보인 빈도는 각각 17.3%와 1.8%였다. 본 연구 결과 도출된 혼합치열기 분석법은 기존의 연구들과 비교하여 그 정확성이 높은 것으로 고찰되었다. 다만, 임상 적용 시 복잡한 계산 과정으로 인하여 전산화 환경에서 더욱 유용할 것으로 생각된다.
본 논문에서는 선형 판별분석 (LDA: Linear Discriminant Analysis)과 공통벡터 추출방법을 이용한 음성인식방법을 제안하였다. 음성신호는 화자의 성별, 나이, 출생지, 주위 잡음, 정신적 상태, 발성기관의 구조 등과 같은 다양한 정보를 포함하고 있다. 이로 인해 같은 음성신호라 할지라도 서로 다른 화자가 발성하게 되면 서로 다른 특성을 보이게 된다. 음성신호의 이러한 성질은 같은 음성군 (class)에 포함된 공통된 특성벡터를 추출하는 일을 상당히 어렵게 한다. 음성신호에서 공통된 특징 벡터를 추출하는 방법은 KLT (Karhunen-Loeve Transformation)와 같이 선형 대수적인 접근방법이 많이 사용되어지고 있으나, 본 논문에서는 M. Bilginer et al.이 제안한 공통벡터 추출 방법을 사용하였다. M. Bilginer et al.이 제안한 방법은 주어진 훈련 음성신호들에 대하여 최적의 공통 벡터를 추출하여 주면서 공통벡터 추출에 사용된 훈련 데이터에 대해서는 100%의 인식결과를 보여준다. 그러나 공통벡터 추출을 위한 훈련 음성신호의 수를 무한히 늘릴 수 없다는 점과 공통벡터들간의 구별정보 (discriminant information)가 정의되지 않았다는 단점이 있다. 본 논문에서는 단어그룹간 (class) 구별정보를 추출된 공통벡터와 결합해 단어간의 오인식률 (error rate)을 감소시킬 수 있는 방법과 공통벡터 추출방법에 적합한 파라미터 가공 방법을 제안하였다. 공통벡터 추출방법은 음성신호의 시간 축 정규화 방법과 벡터의 차원 크기에 따라 인식시간과 인식률에 영향을 받는다. 따라서 부적절한 시간 축 정렬과 너무 큰 벡터의 차원 수는 인식률 저하 등과 같이 알고리즘의 효율성을 떨어뜨린다. 본 논문에서 제안한 방법을 사용하여 실험한 결과 알고리즘의 효율성이 증가되었으며, 기존방법보다 약 2%정도의 향상된 인식률을 얻을 수 있었다.낮추는 효과를 나타내었다.다. 이상의 결과를 통하여 추출 온도와 용매 농도에 따른 수율의 차이가 있었으며 free radical 소거 활성에서는 종자 에탄을 추출물이 과피 에탄올 추출물 보다 145배 이상의 현저히 높은 활성을 나타내었다.을 나타내었다.'Lian(연)' : repeatability, continuance, plenty and intercommunicate, 2. 'Lian(연)'-'Lian(염)': integrity, 3. 'He (하)'-'He(화)' : peace, harmony and combination, 4. 'He(하)'-'He(하)' : clear river, 5.'He(하)'-'He(하)' ; all work goes well. When the Chinese use lotus patterns in lucky omen patterns, same pronunciation and pitch of Chinese language more prominent than natural properties or the image of Buddhism. I guess that it cause praying individual's peace and happiness more serious than philosophical meaning or symbol that base in Buddhism for ordinary people.ML., -9.00~12.49 and -19.81~19.81%, respectively). Therefore, it is concluded that the two formulations are bioequivalent for both the extent and the rate of absorption after single dose administration.ation.ion.ion.ation.ion.n. fibrosis, collagen bundle) was
종래의 전달매트릭스법과 Frontal 전달매트릭스법에 있어서의 계산의 안정성과 효율성을 검토하고 또 이 두 방법에 선형내삽법을 적용하여 각 방법에 의한 해의 수렴특성을 분석한 결과를 요약하면 다음과 같다. 1. 시행값이 작을 경우 두 방법에 의한 계산의 안정성이나 정확성의 면에서 전혀 차이가 없으나, 시행값이 커질수록 전달매트릭스법에 의한 계산의 오차가 증대해지고, 어느 시행값이 이상이 되면 계산이 불안정해 진다. 2. Frontal 전달 매트릭스법은 시행값의 선택에 큰 제약을 받으며, 적절한 시행값을 선택하지 못 했을 경우, 원하는 해를 구할 수 없다. 3. Frontal 전달 매트릭스법에 의한 시행값-진동수행렬식의 값이 plot에 있어서는 불연속점이 존재하고, 이 불연속점을 경계로 plot는 + 혹은 -의 최대값으로 발산하며 다시 새로운 연속구간이 시작된다. 양단의 경계조건이 같을 경우에는 +에서 -로 바뀌는 연속구간내에, 양단의 경계조건이 다를 경우에는 -에서 +로 바뀌는 연속구간내에 해가 존재한다. 4. 선형내삽법을 적용할 때 근사해로의 수렴에 필요한 반복회수는 Frontal 전달 매트릭스법이 훨씬 많으며 한 시행값에 대한 계산시간도 더 많이 필요하므로 근사해를 구하는 전체적인 계산시간은 연속매트릭스법에 비해 훨씬 더 많이 소요된다. 5. Frontal 연속매트릭스법에 의한 계산은 경계조건이나 중간조건에 따라 매트릭스 요소를 기지와 미지로 재배치해야 하고 또는 시행값의 선택이나 불연속구간의 판별 등 많은 제약이 따르므로 프로그램의 작성과 그 실행이 연속매트릭스법에 비해 훨씬 번거롭다.
본 논문에서는 얼굴영상을 이용하여 한국인과 일본인의 감정인식에 대하여 연구하였다. 얼굴의 감정인식을 위하여 심리학자인 Ekman과 Friesen의 연구에 의해 문화에 영향을 받지 않고 공통으로 인식하는 6개의 기본 감정인 기쁨, 슬픔, 화남, 놀람, 공포, 혐오를 바탕으로 실험하였다. 감정인식에서 입력영상은 이산 웨이블렛을 기반으로 한 다해상도 분석기법을 사용하여 데이터 수를 압축한 후, 각각의 영상에서 주성분분석기법 및 선형판별분석기법에 의해 얼굴의 감정특징을 추출하였다. 실험결과 한국인과 일본인 모두 "기쁨", "슬픔", "화남" 감정은 비교적 인식률이 높은 반면에 "놀람", "공포", "혐오" 감정은 인식률이 저조하게 나타냈다. 특히, 일본인의 경우 "혐오" 감정이 가장 저조한 결과를 나타냈으며, 전반적으로 한국인에 비해 일본인의 감정인식결과가 낮은 것으로 나타났다.
본 논문은 차세대 지능형 기술 분야중 하나인 유비쿼터스 컴퓨팅 환경 기반에서의 얼굴인식을 제안한 것으로, 모바일 장치 중 하나인 핸드폰 카메라를 이용하여 얼굴 영상을 취득하고, 이를 이용하여 얼굴의 특징을 추출하고 인식하는 과정을 통해 모바일 보안을 생각하고자 한다. 얼굴인식을 위해 제안하는 방법은 PCA와 Fuzzy-LDA를 사용하였으며, 모바일 환경에서 데이터의 량을 줄이기 위해 다해상도 분석을 기반으로 하는 이산 웨이블렛을 사용하였다. 또한 획득된 특징데이터의 연결성을 확인하여 인식률을 얻기 위해 유클리디언 거리 측정 법을 사용하였다. 마지막으로 본 논문에서 제안한 방법의 유용성을 알아보기 위해 핸드폰 카메라를 이용해 실험한 결과 일반 카메라에서 획득한 영상에 비해 모바일 장치로부터 획득한 영상이 저해상도를 갖음에도 불구하고 높은 성능을 갖음을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.