• Title/Summary/Keyword: 다분야 통합 설계최적화

Search Result 37, Processing Time 0.022 seconds

A Network-Distributed Design Optimization Approach for Aerodynamic Design of a 3-D Wing (3차원 날개 공력설계를 위한 네트워크 분산 설계최적화)

  • Joh, Chang-Yeol;Lee, Sang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.10
    • /
    • pp.12-19
    • /
    • 2004
  • An aerodynamic design optimization system for three-dimensional wing was developed as a part of the future MDO framework. The present design optimization system includes four modules such as geometry design, grid generation, flow solver and optimizer. All modules were based on commercial softwares and programmed to have automated execution capability in batch mode utilizing built-in script and journaling. The integration of all modules into the system was accomplished through programming using Visual Basic language. The distributed computational environment based on network communication was established to save computational time especially for time-consuming aerodynamic analyses. The distributed aerodynamic computations were performed in conjunction with the global optimization algorithm of response surface method, instead of using usual parallel computation based on domain decomposition. The application of the design system in the drag minimization problem demonstrated considerably enhanced efficiency of the design process while the final design showed reasonable results of reduced drag.

Study on an Approximation Technique using MDO (MDO에서 적용가능한 근사기법의 활용에 관한 연구)

  • Park, Chang-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.3661-3666
    • /
    • 2015
  • The paper describes the integrated design system using MDO and approximation technique. In MDO related research, final target is an integrated and automated MDO framework systems. However, in order to construct the integrated design system, the prerequisite condition is how much save computational cost because of iterative process in optimization design and lots of data information in CAD/CAE integration. Therefore, this paper presents that an efficient approximation method, Adaptive approximation, is a competent strategy via MDO framework systems.

Papers : Transonic Wing Planform Design Using Multidisciplinary Optimization (논문 : 다분야 통합 최적설계 기법을 이용한 날개 기본 형상 설계)

  • Im,Jong-U;Gwon,Jang-Hyeok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.20-27
    • /
    • 2002
  • Aircraft design requires the intergration of several disciplines, inculding aerodynamics, structures, controls. To achieves advances in performance, each technology, or discipline must be more accurate in analysis and must be more highly intergrated. One of the important interdisciplinary interactions in mordern aircraft design is that of aerodynamics and structures. In this study, for increasing accuracy in each discipline's analysis, CFD for aerodynamic analysis and FEM for structurral analysis was used and, for considering important interdisciplinary interactions, aeroelastic effect was considered. As optimization algorithm, PBIL algorithm was used for global optima and was parallelized to alleviate the computational burden. The efficiency and accuracy of the present method was assesed by range maximiziation of reference of reference wing.

Multidisciplinary Design Optimization of Vehicle Front Suspension System Using PIDO Technology (PIDO 기술을 이용한 차량 전륜 현가계의 다분야통합최적설계)

  • Lee, Gab-Seong;Park, Jung-Min;Choi, Byung-Lyul;Choi, Dong-Hoon;Nam, Chan-Hyuk;Kim, Gi-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.1-8
    • /
    • 2012
  • Multidisciplinary design optimization (MDO) for a suspension component of the vehicle front suspension was performed in this research. Shapes and thicknesses of the subframe were optimized to satisfy multi-disciplinary design requirements; weight, fatigue, crash, noise, vibration, and harshness (NVH), and kinematic and compliance (K&C). Analyses procedures of the performance disciplines were integrated and automated by using the process integration and design optimization (PIDO) technique, and the integrated and automated analyses environments enabled various types of analytic design methodologies for solving the MDO problem. We applied an approximate optimization technique which involves sequential sampling and metamodeling. Since the design variables for thicknesses should be dealt as discrete variables. the evolutionary algorithm is selected as optimization technique. The MDO problem was formulated three types of problems according to the order of priorities among the performance disciplines, and the results of MDO provided design alternatives for various design situations.

A Decomposition Based MDO by Coordination of Disciplinary Subspace Optimization (분야별 하부시스템의 최적화를 통합한 분해기반 MDO 방법론)

  • Jeong, Hui-Seok;Lee, Jong-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.9
    • /
    • pp.1822-1830
    • /
    • 2002
  • The paper describes the development of a decomposition based multidisciplinary design optimization (MDO) method that coordinates each of disciplinary subspace optimization (DSO). A multidisciplinary design system considered in the present study is decomposed into a number of subspaces based on their own design objective and constraints associated with engineering discipline. The coupled relations among subspaces are identified by interdisciplinary design variables. Each of subsystem level optimization, that is DSO would be performed in parallel, and the system level coordination is determined by the first order optimal sensitivities of subspace objective functions with respect to interdisciplinary design variables. The central of the present work resides on the formulation of system level coordination strategy and its capability in decomposition based MDO. A fluid-structure coupled design problem is explored as a test-bed to support the proposed MDO method.

Improvement of Sensitivity Based Concurrent Subspace Optimization Using Automatic Differentiation (자동미분을 이용한 민감도기반 분리시스템동시최적화기법의 개선)

  • Park, Chang-Gyu;Lee, Jong-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.182-191
    • /
    • 2001
  • The paper describes the improvement on concurrent subspace optimization(CSSO) via automatic differentiation. CSSO is an efficient strategy to coupled multidisciplinary design optimization(MDO), wherein the original design problem is non-hierarchically decomposed into a set of smaller, more tractable subspaces. Key elements in CSSO are consisted of global sensitivity equation, subspace optimization, optimum sensitivity analysis, and coordination optimization problem that require frequent use of 1st order derivatives to obtain design sensitivity information. The current version of CSSO adopts automatic differentiation scheme to provide a robust sensitivity solution. Automatic differentiation has numerical effectiveness over finite difference schemes tat require the perturbed finite step size in design variable. ADIFOR(Automatic Differentiation In FORtran) is employed to evaluate sensitivities in the present work. The use of exact function derivatives facilitates to enhance the numerical accuracy during the iterative design process. The paper discusses how much the automatic differentiation based approach contributes design performance, compared with traditional all-in-one(non-decomposed) and finite difference based approaches.

Multidisciplinary Design Optimization for Acoustic Characteristics of a Speaker Diaphragm (스피커 진동판의 음향특성 다분야통합최적설계)

  • Kim, Sung-Kuk;Lee, Tae-Hee;Lee, Surk-Soon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.763-766
    • /
    • 2004
  • Recently, various acoustic artifacts that contains speaker have been produced such as cellular phone. Speaker consists of diaphragm generating sound and coil vibrating diaphragm. Generally, good speaker means that it has a wide frequency range, high output power rate to input power and flat sound pressure level in specified frequency range. Acoustic characteristic was estimated through the experiment and computer simulation, or sound power was controlled with acoustic sensitivity in a natural frequency range fer last decade. However, the flatness of sound pressure level has not been considered to enhance the sound quality of a speaker. Tn this study, a method for speaker design is proposed for a good acoustic characteristic, which is flatness of SPL(sound pressure level) and wideness between the first and second natural frequency. SYSNOISE is used fer acoustic analysis and ANSYS is used for harmonic response analysis and modal analysis. Optimization for acoustic characteristics of a speaker diaphragm is performed using ModelCenter. All analyses are done within a frequency domain. And we confirm that the experimental and computational simulations have similar trend.

  • PDF