• Title/Summary/Keyword: 다변량 시계열분석

Search Result 59, Processing Time 0.03 seconds

Hedging effectiveness of KOSPI200 index futures through VECM-CC-GARCH model (벡터오차수정모형과 다변량 GARCH 모형을 이용한 코스피200 선물의 헷지성과 분석)

  • Kwon, Dongan;Lee, Taewook
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.6
    • /
    • pp.1449-1466
    • /
    • 2014
  • In this paper, we consider a hedge portfolio based on futures of underlying asset. A classical way to estimate a hedge ratio for a hedge portfolio of a spot and futures is a regression analysis. However, a regression analysis is not capable of reflecting long-run equilibrium between a spot and futures and volatility clustering in the conditional variance of financial time series. In order to overcome such defects, we analyzed KOSPI200 index and futures using VECM-CC-GARCH model and computed a hedge ratio from the estimated conditional covariance-variance matrix. In real data analysis, we compared a regression and VECM-CC-GARCH models in terms of hedge effectiveness based on variance, value at risk and expected shortfall of log-returns of hedge portfolio. The empirical results show that the multivariate GARCH models significantly outperform a regression analysis and improve hedging effectiveness in the period of high volatility.

Prediction of the interest spread using VAR model (벡터자기회귀모형에 의한 금리스프레드의 예측)

  • Kim, Junhong;Jin, Dalae;Lee, Jisun;Kim, Suji;Son, Young Sook
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.6
    • /
    • pp.1093-1102
    • /
    • 2012
  • In this paper, we predicted the interest spread using the VAR (vector autoregressive) model. Variables used in the VAR model were selected among 56 domestic and foreign macroeconomic time series through crosscorrelation and Granger causality test. The performance of the VAR model was compared with the univariate time series model, AR (autoregressive) model, in view of MAPE (mean absolute percentage error) and RMSE (root mean square error) of forecasts for the last twelve months.

A Review of Time Series Analysis for Environmental and Ecological Data (환경생태 자료 분석을 위한 시계열 분석 방법 연구)

  • Mo, Hyoung-ho;Cho, Kijong;Shin, Key-Il
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.4
    • /
    • pp.365-373
    • /
    • 2016
  • Much of the data used in the analysis of environmental ecological data is being obtained over time. If the number of time points is small, the data will not be given enough information, so repeated measurements or multiple survey points data should be used to perform a comprehensive analysis. The method used for that case is longitudinal data analysis or mixed model analysis. However, if the amount of information is sufficient due to the large number of time points, repetitive data are not needed and these data are analyzed using time series analysis technique. In particular, with a large number of data points in the current situation, when we want to predict how each variable affects each other, or what trends will be expected in the future, we should analyze the data using time series analysis techniques. In this study, we introduce univariate time series analysis, intervention time series model, transfer function model, and multivariate time series model and review research papers studied in Korea. We also introduce an error correction model, which can be used to analyze environmental ecological data.

Volatility Analysis for Multivariate Time Series via Dimension Reduction (차원축소를 통한 다변량 시계열의 변동성 분석 및 응용)

  • Song, Eu-Gine;Choi, Moon-Sun;Hwang, S.Y.
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.6
    • /
    • pp.825-835
    • /
    • 2008
  • Multivariate GARCH(MGARCH) has been useful in financial studies and econometrics for modeling volatilities and correlations between components of multivariate time series. An obvious drawback lies in that the number of parameters increases rapidly with the number of variables involved. This thesis tries to resolve the problem by using dimension reduction technique. We briefly review both factor models for dimension reduction and the MGARCH models including EWMA (Exponentially weighted moving-average model), DVEC(Diagonal VEC model), BEKK and CCC(Constant conditional correlation model). We create meaningful portfolios obtained after reducing dimension through statistical factor models and fundamental factor models and in turn these portfolios are applied to MGARCH. In addition, we compare portfolios by assessing MSE, MAD(Mean absolute deviation) and VaR(Value at Risk). Various financial time series are analyzed for illustration.

Time series and deep learning prediction study Using container Throughput at Busan Port (부산항 컨테이너 물동량을 이용한 시계열 및 딥러닝 예측연구)

  • Seung-Pil Lee;Hwan-Seong Kim
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.391-393
    • /
    • 2022
  • In recent years, technologies forecasting demand based on deep learning and big data have accelerated the smartification of the field of e-commerce, logistics and distribution areas. In particular, ports, which are the center of global transportation networks and modern intelligent logistics, are rapidly responding to changes in the global economy and port environment caused by the 4th industrial revolution. Port traffic forecasting will have an important impact in various fields such as new port construction, port expansion, and terminal operation. Therefore, the purpose of this study is to compare the time series analysis and deep learning analysis, which are often used for port traffic prediction, and to derive a prediction model suitable for the future container prediction of Busan Port. In addition, external variables related to trade volume changes were selected as correlations and applied to the multivariate deep learning prediction model. As a result, it was found that the LSTM error was low in the single-variable prediction model using only Busan Port container freight volume, and the LSTM error was also low in the multivariate prediction model using external variables.

  • PDF

Analysis of Multivariate-GARCH via DCC Modelling (DCC 모델링을 이용한 다변량-GARCH 모형의 분석 및 응용)

  • Choi, S.M.;Hong, S.Y.;Choi, M.S.;Park, J.A.;Baek, J.S.;Hwang, S.Y.
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.5
    • /
    • pp.995-1005
    • /
    • 2009
  • Conditional correlation between financial time series plays an important role in risk management, asset allocation and portfolio selection and therefore diverse efforts for modeling conditional correlations in multivariate-GARCH processes have been made in last two decades. In particular, CCC (cf. Bollerslev, 1990) and DCC(dynamic conditional correlation, cf. Engle, 2002) models have been commonly used since they are relatively parsimonious in the number of parameters involved. This article is concerned with DCC modeling for multivariate GARCH processes in comparison with CCC specification. Various multivariate financial time series are analysed to illustrate possible advantages of DCC over CCC modeling.

Classification Performance Comparison of Inductive Learning Methods : The Case of Corporate Credit Rating (귀납적 학습방법들의 분류성능 비교 : 기업신용평가의 경우)

  • 이상호;지원철
    • Journal of Intelligence and Information Systems
    • /
    • v.4 no.2
    • /
    • pp.1-21
    • /
    • 1998
  • 귀납적 학습방법들의 분류성능을 비교 평가하기 위하여 대표적 분류문제의 하나인 신용평가 문제를 사용하였다. 분류기로서 사용된 귀납적 학습방법론들은 통계학의 다변량 판별분석(MDA), 기계학습 분야의 C4.5, 신경망의 다계층 퍼셉트론(MLP) 및 Cascade Correlation Network(CCN)의 4 가지이며, 학습자료로는 국내 3개 신용평가기관이 발표한 신용등급 및 공포된 재무제표를 사용하였다. 신용등급 예측의 정확도에 의한 분류성능을 평가하였는데 연도별 평가와 시계열 평가의 두 가지를 실시하였다. Cascade Correlation Network이 가장 좋은 분류성능을 보였지만 4가지 분류기들 사이에 통계적으로 유의한 차이는 발견되지 않았다. 이는 사용된 학습자료가 갖는 한계로 인한 것으로 추정되지만, 성능평가 과정에 있어 학습자료의 전처리 과정이 분류성과의 제고에 매우 유효함이 입증되었다.

  • PDF

Visual Analytics Approach for Performance Improvement of predicting youth physical growth model (청소년 신체 성장 예측 모델의 성능 향상을 위한 시각적 분석 방법)

  • Yeon, Hanbyul;Pi, Mingyu;Seo, Seongbum;Ha, Seoho;Oh, Byungjun;Jang, Yun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.4
    • /
    • pp.21-29
    • /
    • 2017
  • Previous visual analytics researches has focused on reducing the uncertainty of predicted results using a variety of interactive visual data exploration techniques. The main purpose of the interactive search technique is to reduce the quality difference of the predicted results according to the level of the decision maker by understanding the relationship between the variables and choosing the appropriate model to predict the unknown variables. However, it is difficult to create a predictive model which forecast time series data whose overall trends is unknown such as youth physical growth data. In this paper, we pro pose a novel predictive analysis technique to forecast the physical growth value in small pieces of time series data with un certain trends. This model estimates the distribution of data at a particular point in time. We also propose a visual analytics system that minimizes the possible uncertainties in predictive modeling process.

Assessment of the Properties and Suitability for Bivariate Probability Distribution of Rainfall Event along the Inter-Event Time (최소무강우시간(Inter-Event Time)에 따른 강우사상 특성 및 이변량 확률분포형 적합성 검토)

  • Joo, Kyungwon;Shin, Ju-Young;Kim, Hanbeen;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.463-463
    • /
    • 2017
  • 최근 다변량 확률모형 연구 및 기후변화에 따른 강우패턴 연구의 증가에 따라 시계열로 기록되어 있는 강우량 자료로부터 강우사상(Event)을 분리하는 연구 또한 활발히 이루어지고 있다. 일반적으로 강우사상은 최소무강우시간(Inter-Event Time)을 기준으로 전후강우가 독립적인 강우인지 연속적인 강우인지 구별하는데 이 최소무강우시간을 결정하는 방법이 각 사용되는 분야마다 일관되지 않은 점이 있다. 본 연구에서는 30년 이상 기록된 기상청 강우관측소 자료를 이용하였으며, 설계강우의 시간분포를 위한 Huff 4분위법에서 사용되는 6시간의 최소무강우시간분터 지수확률분포 방법으로 얻어지는 최소무강우시간(일반적으로 12시간 내외)까지 최소무강우시간의 변화에 따라 분리된 강우사상의 특성을 분석하였다. 또한 강우사상의 이변량 빈도해석 적합성을 검토하기 위해 연최대강우량 사상을 선정하여 빈도해석을 수행하였으며 최소무강우 시간에 따라 이변량 확률분포형 적합성을 검토하였다.

  • PDF

Evaluation of Multivariate Stream Data Reduction Techniques (다변량 스트림 데이터 축소 기법 평가)

  • Jung, Hung-Jo;Seo, Sung-Bo;Cheol, Kyung-Joo;Park, Jeong-Seok;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.13D no.7 s.110
    • /
    • pp.889-900
    • /
    • 2006
  • Even though sensor networks are different in user requests and data characteristics depending on each application area, the existing researches on stream data transmission problem focus on the performance improvement of their methods rather than considering the original characteristic of stream data. In this paper, we introduce a hierarchical or distributed sensor network architecture and data model, and then evaluate the multivariate data reduction methods suitable for user requirements and data features so as to apply reduction methods alternatively. To assess the relative performance of the proposed multivariate data reduction methods, we used the conventional techniques, such as Wavelet, HCL(Hierarchical Clustering), Sampling and SVD (Singular Value Decomposition) as well as the experimental data sets, such as multivariate time series, synthetic data and robot execution failure data. The experimental results shows that SVD and Sampling method are superior to Wavelet and HCL ia respect to the relative error ratio and execution time. Especially, since relative error ratio of each data reduction method is different according to data characteristic, it shows a good performance using the selective data reduction method for the experimental data set. The findings reported in this paper can serve as a useful guideline for sensor network application design and construction including multivariate stream data.