본 논문에서는 열간압연 공정에 있어 효율적인 제품 생산 스케줄링에 필수적인 제품단위 에너지 사용 모델링 기법을 제안한다. 제안된 모델은 시스템 자원을 효율적 혹은 최소화하여 사용하여 실시간 처리량을 최대화함으로써 생산 예정 리스트로부터의 예측 작업 수행시간을 최소화할 수 있도록 한다. 제안된 기법은 다변량 선형 모델 방식으로 구성됨으로써 인공 지능 혹은 신경망 학습 방식에 비교하여 그 처리 속도가 빠르다는 장점을 가지고 있다. 본 논문에서는 서두에서 대상 응용처인 철강 산업과 열간 압연 공정 및 에너지 스케줄링에 대하여 간략히 언급한 후 본문에서 모델링을 위한 사전 데이터 수집, 모델링 기법을 자세히 설명하고 결론에서 모델의 정확도 성능을 최신 신경망 기법과 비교하여 검증하였다.
본 연구에서는 우리나라 56개 연구지역에 대해서 증발량 산정방법 중에 하나인 공기동력학적 방법의 적용성을 검토하였다. 이를 위해 과거 연구자들에 의해서 제안된 공기동력학적 증발량 산정식들을 7가지 형식으로 구분하고 일반화하여 증발량 산정모델을 유도하였다. 또한, 공기동력학적 방법 적용에 필요한 기상요소자료들(풍속, 포화미흡량, 기온, 대기압)을 이용하여 4가지의 다변량 선형회귀모델을 유도하고 그 적용성을 검토하였다. 기상자료들의 자기상관의 영향을 고려하기 위해 변수들을 차분시켜 회귀분석을 실시하고 자기상관을 고려하지 않은 경우와 비교한 결과 결정계수 값에 큰 차이가 없음을 확인하였다. 연구결과에 의하면 공기동력학적 모델이나 다변량 선형회귀모델 모두에서 산정된 월 증발량과 관측된 월 증발량 사이에 매우 높은 상관성이 있는 것으로 나타났다. 하지만 대부분의 증발량 산정모델에서 8, 9, 10, 11, 12월에 증발량을 과다 산정하고 있는 것으로 나타났다. 다변량 선형회귀모델들에 사용된 기상요소자료들은 모두 증발량 산정에 유의한 영향력이 있는 것으로 나타났으며, 특히 포화 미흡량이 가장 중요한 기상요소이며, 두 번째로는 기온, 세 번째로는 풍속, 그리고 마지막으로 대기압인 것으로 나타났다.
공학문제에서 많은 확률 변수들은 상관성을 가지고 있고, 입력변수의 상관성은 기계시스템의 통계적 성능 분석 결과에 큰 영향을 미친다. 하지만, 상관 변수들은 결합분포함수를 모델링하기 어렵다는 이유로 종종 독립변수로 취급되거나 특정한 모수적 모델로 표현되는 경우가 많으며, 특히 데이터가 적은 경우 결합분포함수를 정확히 모델링하는데 더 큰 어려움이 있다. 본 연구에서 개발된 경계데이터를 이용한 다변량 커널밀도추정은 비선형성을 갖는 다양한 형태의 다변량 확률 분포 추정을 위해 개발되었다. 다변량 커널밀도추정은 주어진 데이터와 균등분포함수의 파라미터의 신뢰구간으로부터 생성된 경계데이터를 결합하여 데이터의 질과 수에 덜 민감하다. 따라서 제안된 방법은 보수적인 통계모델링과 신뢰성 해석 결과를 도출할 수 있으며, 통계시뮬레이션과 공학예제를 통해 그 성능을 검증하였다.
본 연구에서는 암반대응형 TBM의 소요 사양 산출과 커터헤드 설계를 위한 통계모델을 도출하고자 하였다. 이를 위하여 다양한 암반 조건에서 수집된 871개의 TBM 굴진자료와 51개의 암석 선형절삭시험 결과에 대해 다변량 회귀분석을 실시하여, 다양한 암석 특성과 절삭 조건을 고려한 최적 모델을 도출하였다. 회귀분석을 통해 도출된 설계모델들을 2개의 쉴드터널 현장에 적용한 결과, 커터 관입깊이, 커터 작용력 및 커터 간격과 같은 TBM 핵심 설계항목의 예측결과들이 실제 현장의 굴진결과와 잘 부합되는 것으로 나타났다.
최근 공정의 이상을 감지하고 진단하기 위한 공정 모니터링 시스템의 개발이 공정 시스템 분야에서 많은 주목을 받고 있다. 공정으로부터 얻어지는 데이터는 공정의 특성에 대한 유용한 정보를 제공하고 이는 공정의 모델링과 모니터링 그리고 제어에 사용된다. 현대의 화학 및 환경 공정은 고차원적인 특성과 변수간의 강한 상관관계와 동특성 그리고 비선형적 특성을 가지고 있어 모델 기반 접근을 통해 공정을 분석하는 것을 쉽지 않다. 이러한 모델 기반 접근의 한계를 극복하기 위해 많은 시스템 엔지니어와 연구자들이 주성분 분석법(principal component analysis, PCA) 또는 부분 최소 자승법(partial least squares, PLS)과 같은 다변량 분석을 접목한 통계 기반 접근법에 초점을 맞추고 있다. 또한 동특성, 비선형성 등과 같은 특성을 가진 공정에 적용하기 위해 많은 다변량 분석법들이 보완되었다. 여기에서는 동적 주성분 분석법(dynamic PCA)과 케노니컬 변수 분석법(canonical variate analysis)을 이용한 결측 데이터의 예측법과 공정 변수의 복원을 통한 센서 오작동의 판별법에 대해 언급해 보고자 한다.
고속액체크로마트그래피에서 RAH분자들이 상대적 용리시간을 다변량선형회귀분석과 인공신경망분석방법을 사용하여 학습시킨 후, 시험 세트의 상대적 용리시간을 예측하였다. PAH의 QSRR에서 주요한 설명인자는 분자연결지수($^1X_v,\;^2X_v$),길이와 폭의 비율(L/B) 및 분자 쌍극자 모멘트(D)이었다, 슬롯 모델과 관계깊은 L/B은 인공신경망분석방법에서는 적절한 설명인자로 작용하나, 다변량회귀분석에서는 그러하지 못하다. 시험세트에서 용리시간 예측도를 나타내주는 분산은 각각 인공신경망분석방법에서 0.0099, 다변량회귀분석방법에서 0.0114이었다. 인공신경망분석방법이 다변량회귀분석보다 더 좋은 결과를 보여준다.
생산 공정의 다변량 데이터에 기반한 지능적 공정 감시 및 진단 시스템은 조업의 안정성과 고품질의 제품을 달성하고 경쟁력을 유지하기 위해서는 필수적인 업무 중 하나로 간주되고 있는데, 이와 같은 추세는 공정 이상이 발생하는 경우 안정적이고 경제적인 조업에 큰 영향을 미치는 것에 기인한다. 본 연구에서는 다변량 공정 데이터에 기반한 진단기법을 제시하고 이를 시뮬레이션 공정 데이터를 활용하여 그 성능을 평가하고자 한다. 또한 원 데이터의 전처리 과정의 유무와 비선형 방법론의 활용이 진단 성능에 마치는 영향을 시뮬레이션 공정에서 제시된 15개의 공정 이상에 대해 평가하였다. 그 결과 제안된 방법론이 신뢰할 만한 결과를 주었으며 다른 비교 방법론인 전처리 과정이 없거나 선형 방법론을 사용한 타 방법론 대비 우월한 성능을 보여주었다. 제시된 방법론은 공정 데이터에 기반한 방법론으로서 공정에 대한 수학적 모델이나 지식 모델에 비하여 상대적으로 모델링이 간편하며 공정 데이터의 잡음에 강건하다는 장점을 가진다.
여름우기와 겨울기간 동안에 준건조 기후 유역들(Lucky Hills 그리고 Kendall) 로부터 측정된 기상학적 그리고 토양 함수량 자료를 이용하여 증발산의 조절변수들 간에 상관관계와 매일의 실제 증발산량 산정을 위한 변수들의 영향을 연구하였다. 기상학적 요소와 토양 함수량의 중요도를 알아보기 위하여 단순, 다변량선형상관분석들이 적용되어졌으며, 얻어진 정보는 다변량선형상관모델을 개발하기 위하여 사용되어졌다. 유효 에너지와 대기 증기압 차는 두 다른 유역과 계절 기간 동안에 증발산을 지배하는 중요한 변수인 것으로 판명되어졌다. 그러므로 준건조 기후 지역에 있어서 증발산 과정의 중요한 변수로는 단순히 Penman에 의해서 제안된 잠재 증발산 모형의 에너지 항에 있어서 유효 에너지와 공기 동력 항에 있어서 대기증개압차인 것으로 나타났다.
본 연구에서는 웨어러블 디바이스로부터 수집된 다변량 반려동물 행동 데이터를 처리하기 위해, GCN(Graph Convolutional Network)과 GRU(Gated Recurrent Unit)를 결합한 모델을 제안한다. 제안된 모델은 시계열 내부 구조를 활용하여 그래프 구조로 변환하고, DTW(Dynamic Time Warping) 유사도 분석을 통해 노드 간의 시간적 유사도를 기반으로 엣지를 생성한다. 실험결과로 DTW 기반 엣지 생성 방식이 유클리드 거리 및 선형 방식에 비해 더 높은 성능을 나타냈다. 본 연구는 반려동물의 행동을 정확히 분류하기 위한 효과적인 방법론을 제공한다.
정보 통신 기술의 기하급수적인 발전에 따라 확보 가능한 데이터의 종류와 크기가 증가하고 있다. 이러한 대량의 데이터를 활용하기 위해, 통계 등 확보한 데이터를 분석하는 것이 중요하지만 다양화되고 복잡도가 증가한 데이터를 일반적인 방법으로 처리하는 것에는 명확한 한계가 있다. 한편, 연산 처리 능력 고도화 및 자동화 시스템에 대한 수요 증가에 따라 다양한 분야에 기계 학습을 적용하여 그동안 해결하지 못하였던 문제들을 풀고자 하는 시도가 증가하고 있다. 기계 학습 모델의 성능을 확보하기 위해서 모델의 입력에 사용되는 데이터를 가공하는 것과 해결하고자 하는 목적 함수에 따라 모델을 설계하는 것이 중요하다. 많은 연구를 통해 데이터의 종류 및 특성에 따라 데이터를 처리하는 방법이 제시되었으며, 그 방법에 따라 기계 학습의 성능에는 큰 차이가 나타난다. 그럼에도 불구하고, 데이터의 종류와 특성이 다양해짐에 따라 데이터 분석을 위하여 어떠한 데이터 처리 방법을 적용해야 하는지에 대한 어려움이 존재한다. 특히, 기계 학습을 이용하여 비선형적 문제를 해결하기 위해서는 다변량 데이터를 처리하는 것이 필수적이다. 본 논문에서는 다양한 형태의 변수를 포함하는 Kaggle의 Titanic 데이터셋을 이용하여 기계 학습 기반으로 데이터 분석을 수행하기 위한 다변량 정형 (tabular) 데이터 처리 방법에 대해 제시한다. 데이터 특성에 따른 통계 분석을 적용한 입력 변수 필터링, 데이터 정규화 등의 처리 방법을 제안하고, 데이터 시각화를 통해 데이터 구조를 분석한다. 마지막으로, 기계 학습 모델을 설계하고, 제안하는 다변량 데이터 처리를 적용하여 모델을 훈련시킨다. 그 이후, 훈련된 모델을 사용하여 탑승객의 생존 여부 예측 성능을 분석한다. 본 논문에서 제시하는 다변량 데이터 처리와 시각화를 적용하여 다양한 환경에서 기계 학습 기반 분석에 확장할 수 있을 것으로 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.