• 제목/요약/키워드: 다변량 선형모델

검색결과 25건 처리시간 0.03초

열간압연공정 에너지 사용 모델 기술개발 (Construction of Energy Model on Hot Rolling Process)

  • 홍종희;이진희;신기훈;김성주
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2020년도 제61차 동계학술대회논문집 28권1호
    • /
    • pp.265-267
    • /
    • 2020
  • 본 논문에서는 열간압연 공정에 있어 효율적인 제품 생산 스케줄링에 필수적인 제품단위 에너지 사용 모델링 기법을 제안한다. 제안된 모델은 시스템 자원을 효율적 혹은 최소화하여 사용하여 실시간 처리량을 최대화함으로써 생산 예정 리스트로부터의 예측 작업 수행시간을 최소화할 수 있도록 한다. 제안된 기법은 다변량 선형 모델 방식으로 구성됨으로써 인공 지능 혹은 신경망 학습 방식에 비교하여 그 처리 속도가 빠르다는 장점을 가지고 있다. 본 논문에서는 서두에서 대상 응용처인 철강 산업과 열간 압연 공정 및 에너지 스케줄링에 대하여 간략히 언급한 후 본문에서 모델링을 위한 사전 데이터 수집, 모델링 기법을 자세히 설명하고 결론에서 모델의 정확도 성능을 최신 신경망 기법과 비교하여 검증하였다.

  • PDF

증발접시 증발량자료를 이용한 공기동력학적 증발량 산정 방법의 적용성 평가 (Applicability evaluation of aerodynamic approaches for evaporation estimation using pan evaporation data)

  • 임창수
    • 한국수자원학회논문집
    • /
    • 제50권11호
    • /
    • pp.781-793
    • /
    • 2017
  • 본 연구에서는 우리나라 56개 연구지역에 대해서 증발량 산정방법 중에 하나인 공기동력학적 방법의 적용성을 검토하였다. 이를 위해 과거 연구자들에 의해서 제안된 공기동력학적 증발량 산정식들을 7가지 형식으로 구분하고 일반화하여 증발량 산정모델을 유도하였다. 또한, 공기동력학적 방법 적용에 필요한 기상요소자료들(풍속, 포화미흡량, 기온, 대기압)을 이용하여 4가지의 다변량 선형회귀모델을 유도하고 그 적용성을 검토하였다. 기상자료들의 자기상관의 영향을 고려하기 위해 변수들을 차분시켜 회귀분석을 실시하고 자기상관을 고려하지 않은 경우와 비교한 결과 결정계수 값에 큰 차이가 없음을 확인하였다. 연구결과에 의하면 공기동력학적 모델이나 다변량 선형회귀모델 모두에서 산정된 월 증발량과 관측된 월 증발량 사이에 매우 높은 상관성이 있는 것으로 나타났다. 하지만 대부분의 증발량 산정모델에서 8, 9, 10, 11, 12월에 증발량을 과다 산정하고 있는 것으로 나타났다. 다변량 선형회귀모델들에 사용된 기상요소자료들은 모두 증발량 산정에 유의한 영향력이 있는 것으로 나타났으며, 특히 포화 미흡량이 가장 중요한 기상요소이며, 두 번째로는 기온, 세 번째로는 풍속, 그리고 마지막으로 대기압인 것으로 나타났다.

다변량 확률분포함수의 추정을 위한 MKDE-ebd 개발 (Development of MKDE-ebd for Estimation of Multivariate Probabilistic Distribution Functions)

  • 강영진;노유정;임오강
    • 한국전산구조공학회논문집
    • /
    • 제32권1호
    • /
    • pp.55-63
    • /
    • 2019
  • 공학문제에서 많은 확률 변수들은 상관성을 가지고 있고, 입력변수의 상관성은 기계시스템의 통계적 성능 분석 결과에 큰 영향을 미친다. 하지만, 상관 변수들은 결합분포함수를 모델링하기 어렵다는 이유로 종종 독립변수로 취급되거나 특정한 모수적 모델로 표현되는 경우가 많으며, 특히 데이터가 적은 경우 결합분포함수를 정확히 모델링하는데 더 큰 어려움이 있다. 본 연구에서 개발된 경계데이터를 이용한 다변량 커널밀도추정은 비선형성을 갖는 다양한 형태의 다변량 확률 분포 추정을 위해 개발되었다. 다변량 커널밀도추정은 주어진 데이터와 균등분포함수의 파라미터의 신뢰구간으로부터 생성된 경계데이터를 결합하여 데이터의 질과 수에 덜 민감하다. 따라서 제안된 방법은 보수적인 통계모델링과 신뢰성 해석 결과를 도출할 수 있으며, 통계시뮬레이션과 공학예제를 통해 그 성능을 검증하였다.

TBM 굴진자료의 다변량 회귀분석에 의한 암반대응형 TBM의 설계모델 도출 (Rock TBM design model derived from the multi-variate regression analysis of TBM driving data)

  • 장수호;최순욱;이규필;배규진
    • 한국터널지하공간학회 논문집
    • /
    • 제13권6호
    • /
    • pp.531-555
    • /
    • 2011
  • 본 연구에서는 암반대응형 TBM의 소요 사양 산출과 커터헤드 설계를 위한 통계모델을 도출하고자 하였다. 이를 위하여 다양한 암반 조건에서 수집된 871개의 TBM 굴진자료와 51개의 암석 선형절삭시험 결과에 대해 다변량 회귀분석을 실시하여, 다양한 암석 특성과 절삭 조건을 고려한 최적 모델을 도출하였다. 회귀분석을 통해 도출된 설계모델들을 2개의 쉴드터널 현장에 적용한 결과, 커터 관입깊이, 커터 작용력 및 커터 간격과 같은 TBM 핵심 설계항목의 예측결과들이 실제 현장의 굴진결과와 잘 부합되는 것으로 나타났다.

다변량 통계 분석을 이용한 결측 데이터의 예측과 센서이상 확인 (Missing Value Estimation and Sensor Fault Identification using Multivariate Statistical Analysis)

  • 이창규;이인범
    • Korean Chemical Engineering Research
    • /
    • 제45권1호
    • /
    • pp.87-92
    • /
    • 2007
  • 최근 공정의 이상을 감지하고 진단하기 위한 공정 모니터링 시스템의 개발이 공정 시스템 분야에서 많은 주목을 받고 있다. 공정으로부터 얻어지는 데이터는 공정의 특성에 대한 유용한 정보를 제공하고 이는 공정의 모델링과 모니터링 그리고 제어에 사용된다. 현대의 화학 및 환경 공정은 고차원적인 특성과 변수간의 강한 상관관계와 동특성 그리고 비선형적 특성을 가지고 있어 모델 기반 접근을 통해 공정을 분석하는 것을 쉽지 않다. 이러한 모델 기반 접근의 한계를 극복하기 위해 많은 시스템 엔지니어와 연구자들이 주성분 분석법(principal component analysis, PCA) 또는 부분 최소 자승법(partial least squares, PLS)과 같은 다변량 분석을 접목한 통계 기반 접근법에 초점을 맞추고 있다. 또한 동특성, 비선형성 등과 같은 특성을 가진 공정에 적용하기 위해 많은 다변량 분석법들이 보완되었다. 여기에서는 동적 주성분 분석법(dynamic PCA)과 케노니컬 변수 분석법(canonical variate analysis)을 이용한 결측 데이터의 예측법과 공정 변수의 복원을 통한 센서 오작동의 판별법에 대해 언급해 보고자 한다.

고속액체 크로마토그래피에서 PAH분자의 구조에 따른 용리시간 예측 (Prediction of Retention Time for PAH Molecule in HPLC)

  • 김영구
    • 대한화학회지
    • /
    • 제44권2호
    • /
    • pp.102-108
    • /
    • 2000
  • 고속액체크로마트그래피에서 RAH분자들이 상대적 용리시간을 다변량선형회귀분석과 인공신경망분석방법을 사용하여 학습시킨 후, 시험 세트의 상대적 용리시간을 예측하였다. PAH의 QSRR에서 주요한 설명인자는 분자연결지수($^1X_v,\;^2X_v$),길이와 폭의 비율(L/B) 및 분자 쌍극자 모멘트(D)이었다, 슬롯 모델과 관계깊은 L/B은 인공신경망분석방법에서는 적절한 설명인자로 작용하나, 다변량회귀분석에서는 그러하지 못하다. 시험세트에서 용리시간 예측도를 나타내주는 분산은 각각 인공신경망분석방법에서 0.0099, 다변량회귀분석방법에서 0.0114이었다. 인공신경망분석방법이 다변량회귀분석보다 더 좋은 결과를 보여준다.

  • PDF

실시간 공정 데이터와 통계적 방법에 기반한 이상진단 (On-line Process Data-driven Diagnostics Using Statistical Techniques)

  • 조현우
    • 한국산학기술학회논문지
    • /
    • 제19권3호
    • /
    • pp.40-45
    • /
    • 2018
  • 생산 공정의 다변량 데이터에 기반한 지능적 공정 감시 및 진단 시스템은 조업의 안정성과 고품질의 제품을 달성하고 경쟁력을 유지하기 위해서는 필수적인 업무 중 하나로 간주되고 있는데, 이와 같은 추세는 공정 이상이 발생하는 경우 안정적이고 경제적인 조업에 큰 영향을 미치는 것에 기인한다. 본 연구에서는 다변량 공정 데이터에 기반한 진단기법을 제시하고 이를 시뮬레이션 공정 데이터를 활용하여 그 성능을 평가하고자 한다. 또한 원 데이터의 전처리 과정의 유무와 비선형 방법론의 활용이 진단 성능에 마치는 영향을 시뮬레이션 공정에서 제시된 15개의 공정 이상에 대해 평가하였다. 그 결과 제안된 방법론이 신뢰할 만한 결과를 주었으며 다른 비교 방법론인 전처리 과정이 없거나 선형 방법론을 사용한 타 방법론 대비 우월한 성능을 보여주었다. 제시된 방법론은 공정 데이터에 기반한 방법론으로서 공정에 대한 수학적 모델이나 지식 모델에 비하여 상대적으로 모델링이 간편하며 공정 데이터의 잡음에 강건하다는 장점을 가진다.

계절과 수문기상학적 조건에 따른 지역 증발산의 특성화 (Characterization of Local Evapotranspiration Based on the Seasonal and Hydrometeorological Conditions)

  • 임창수;이종태;윤세의
    • 물과 미래
    • /
    • 제29권2호
    • /
    • pp.235-247
    • /
    • 1996
  • 여름우기와 겨울기간 동안에 준건조 기후 유역들(Lucky Hills 그리고 Kendall) 로부터 측정된 기상학적 그리고 토양 함수량 자료를 이용하여 증발산의 조절변수들 간에 상관관계와 매일의 실제 증발산량 산정을 위한 변수들의 영향을 연구하였다. 기상학적 요소와 토양 함수량의 중요도를 알아보기 위하여 단순, 다변량선형상관분석들이 적용되어졌으며, 얻어진 정보는 다변량선형상관모델을 개발하기 위하여 사용되어졌다. 유효 에너지와 대기 증기압 차는 두 다른 유역과 계절 기간 동안에 증발산을 지배하는 중요한 변수인 것으로 판명되어졌다. 그러므로 준건조 기후 지역에 있어서 증발산 과정의 중요한 변수로는 단순히 Penman에 의해서 제안된 잠재 증발산 모형의 에너지 항에 있어서 유효 에너지와 공기 동력 항에 있어서 대기증개압차인 것으로 나타났다.

  • PDF

시계열 내부 구조 기반 그래프 생성을 통한 행동 분류 모델 (Behavior Classification Model Based on Graph Generation Using Time Series Structural Feature)

  • 최혁순;양진환;김시웅;김성식;문남미
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.37-40
    • /
    • 2024
  • 본 연구에서는 웨어러블 디바이스로부터 수집된 다변량 반려동물 행동 데이터를 처리하기 위해, GCN(Graph Convolutional Network)과 GRU(Gated Recurrent Unit)를 결합한 모델을 제안한다. 제안된 모델은 시계열 내부 구조를 활용하여 그래프 구조로 변환하고, DTW(Dynamic Time Warping) 유사도 분석을 통해 노드 간의 시간적 유사도를 기반으로 엣지를 생성한다. 실험결과로 DTW 기반 엣지 생성 방식이 유클리드 거리 및 선형 방식에 비해 더 높은 성능을 나타냈다. 본 연구는 반려동물의 행동을 정확히 분류하기 위한 효과적인 방법론을 제공한다.

기계 학습 기반 분석을 위한 다변량 정형 데이터 처리 및 시각화 방법: Titanic 데이터셋 적용 사례 연구 (Multi-Variate Tabular Data Processing and Visualization Scheme for Machine Learning based Analysis: A Case Study using Titanic Dataset)

  • 성주형;권기원;박경원;송병철
    • 인터넷정보학회논문지
    • /
    • 제25권4호
    • /
    • pp.121-130
    • /
    • 2024
  • 정보 통신 기술의 기하급수적인 발전에 따라 확보 가능한 데이터의 종류와 크기가 증가하고 있다. 이러한 대량의 데이터를 활용하기 위해, 통계 등 확보한 데이터를 분석하는 것이 중요하지만 다양화되고 복잡도가 증가한 데이터를 일반적인 방법으로 처리하는 것에는 명확한 한계가 있다. 한편, 연산 처리 능력 고도화 및 자동화 시스템에 대한 수요 증가에 따라 다양한 분야에 기계 학습을 적용하여 그동안 해결하지 못하였던 문제들을 풀고자 하는 시도가 증가하고 있다. 기계 학습 모델의 성능을 확보하기 위해서 모델의 입력에 사용되는 데이터를 가공하는 것과 해결하고자 하는 목적 함수에 따라 모델을 설계하는 것이 중요하다. 많은 연구를 통해 데이터의 종류 및 특성에 따라 데이터를 처리하는 방법이 제시되었으며, 그 방법에 따라 기계 학습의 성능에는 큰 차이가 나타난다. 그럼에도 불구하고, 데이터의 종류와 특성이 다양해짐에 따라 데이터 분석을 위하여 어떠한 데이터 처리 방법을 적용해야 하는지에 대한 어려움이 존재한다. 특히, 기계 학습을 이용하여 비선형적 문제를 해결하기 위해서는 다변량 데이터를 처리하는 것이 필수적이다. 본 논문에서는 다양한 형태의 변수를 포함하는 Kaggle의 Titanic 데이터셋을 이용하여 기계 학습 기반으로 데이터 분석을 수행하기 위한 다변량 정형 (tabular) 데이터 처리 방법에 대해 제시한다. 데이터 특성에 따른 통계 분석을 적용한 입력 변수 필터링, 데이터 정규화 등의 처리 방법을 제안하고, 데이터 시각화를 통해 데이터 구조를 분석한다. 마지막으로, 기계 학습 모델을 설계하고, 제안하는 다변량 데이터 처리를 적용하여 모델을 훈련시킨다. 그 이후, 훈련된 모델을 사용하여 탑승객의 생존 여부 예측 성능을 분석한다. 본 논문에서 제시하는 다변량 데이터 처리와 시각화를 적용하여 다양한 환경에서 기계 학습 기반 분석에 확장할 수 있을 것으로 기대한다.