• Title/Summary/Keyword: 다물체 동역학 모델링

Search Result 57, Processing Time 0.024 seconds

Equivalent Modeling Technique for 1-D Collision Dynamics Using 3-D Finite Element Analysis of Rollingstock (열차의 3차원 유한요소해석을 이용한 1차원충돌 동역학 등가 모델링 기법)

  • Park, Min-Young;Park, Young-Il;Koo, Jeong-Seo
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.139-146
    • /
    • 2010
  • In this study, a new equivalent modeling technique of rollingstock for 1-D collision dynamics was proposed using crash analysis of 3-D finite element model in some detail. To obtain good simulation results of 1-D dynamic model, the force-deformation curves of crushable structures should be well modelled with crash analysis of 3-D finite element model. Up to now, the force-deformation curves of the crushable structures have been extracted from crash analyses of sectionally partitioned parts of the carbody, and integrated into 1-D dynamic model. However, the results of the 1-D model were not satisfactory in terms of crash accelerations. To improve this problem, the force-deformation curves of the crushable structures were extracted from collision analysis of a simplified train consist in this study. A comparative study applying the suggested technique shows in good agreements in simulation results between two models for KHST.

공작기계 이송계의 동적 시뮬레이션 모델의 개발

  • 정영훈;민병권;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.319-319
    • /
    • 2004
  • 최근 컴퓨터 기술의 급속한 발전과 함께, 생산품질의 향상과 생산주기의 단축을 목적으로 유한요소법(FEM)과 다물체 동역학(multi-body dynamics)과 같은 시뮬레이션 기술(math-based engineering)이 산업계 전반에 폭넓게 적용되고 있다. 생산시스템 분야에서는 디지털 생산기술(digital manufacturing) 및 가상 생산기술(virtual manufacturing)의 개념이 소개되면서 생산시스템의 모델링 및 시뮬레이션에 관한 연구가 활발히 시도되고 있다. 그러나 아직까지 대부분의 시뮬레이션 기술이 구조해석과 같은 제한적으로 부문에서만 활용되고 있는 실정이며, 시뮬레이션 모델은 대상이 되었던 몇몇 특수한 경우에 제한적으로 사용될 수 있는 등의 한계를 보여 왔다.(중략)

  • PDF

Multi-body Dynamic Analysis for the Drivetrain System of a Large Wind Turbine Based on GL 2010 (GL 2010 기반 대형 풍력터빈 드라이브트레인 시스템 다물체 동역학 해석기법)

  • Jeong, Dae-Ha;Kim, Dong-Hyun;Kim, Myung-Hwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.5
    • /
    • pp.363-373
    • /
    • 2014
  • In this study, computational multi-body dynamic analyses for the drivetrain system of a 5 MW class offshore wind turbine have been conducted using efficient equivalent modeling technique based on the design guideline of GL 2010. The present drivetrain system is originally modeled and its related system data is adopted from the NREL 5 MW wind turbine model. Efficient computational method for the drivetrain system dynamics is proposed based on an international guideline for the certification of wind turbine. Structural dynamic behaviors of drivetrain system with blade, hub, shaft, gearbox, supports, brake disk, coupling, and electric generator have been analyzed and the results for natural frequency and equivalent torsional stiffness of the drivetrain system are presented in detail. It is finally shown that the present multi-body dynamic analysis method gives good agreement with the previous results of the 5 MW class wind turbine system.

Lightweight Suspension Module Development for Electric Vehicle (전기 자동차용 경량화 서스펜션 모듈 개발)

  • Jung, Yoon-Sik;Shin, Heon-Seop;Rhim, Sungsoo;Choi, Jin-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.8
    • /
    • pp.1015-1019
    • /
    • 2013
  • To improve the energy efficiency and ride quality of an electric vehicle, it is highly desirable to develop a lightweight suspension system with high travel ratio. Air suspension systems with a rubber tube are often considered optimal for such requirements. In this study, a new lightweight air suspension system with high travel ratio was developed for use in electric vehicles. Furthermore, an FE-based multi-flexible-body dynamics (MFBD) model of the suspension system was developed as a tool for improving the design of an actual suspension system. The MFBD model includes the FE modeling of the rubber tube module as well as other essential parts of the air suspension system. The system parameters for the model were obtained from various experiments. The validity of the developed MFBD model was shown through a comparison between the experimental results and the simulation results.

Three Dimensional Modeling and Inverse Dynamic Analysis of An Excavator (굴삭기의 3차원 모델링 및 역동역학 해석)

  • 김외조;유완석;이만형;윤경화
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.2043-2050
    • /
    • 1993
  • This paper presents a three dimensional modeling and dynamic analysis of a hydraulic excavator. An excavator composed of a boom, a bucket, two boom cylinders, an arm cylinder, and a bucket cylinder is used for the analysis. Each cylinder is modeled to two separate bodies linked by a translational joint. Judging from the actual degrees of freedom of the excavator, proper kinematic joints are selected to exclude redundant constraints in the modeling. In order to find the reaction forces at kinematic joints during operations, inverse dynamic analysis is carried out. Dynamic analysis is also carried out to verify the results from inverse dynamic analysis. The DADS program is used for analysis, with proper modification of the DADS user routine according to various motions.

Analysis for the Driving Dynamic Characteristics of Large Scale Semi-Trailer Equipped with Swivel Axle and Hydropneumatic Suspension Unit (회전 차축 및 유기압 현가장치를 장착한 대용량 세미 트레일러의 주행 동특성 해석)

  • Ha, Taewan;Park, Jungsoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.196-209
    • /
    • 2022
  • Driving dynamic characteristics of semi-trailer loaded with precise equipments are very important to protect them from vibration, impact or other disturbances. In this paper, in order to identify the driving dynamic characteristics of the large scale semi-trailer equipped with swivel axle and hydropneumatic suspension unit, Dynamics Modeling & Simulation(M&S) were performed using general Dynamics Analysis Program(RecurDyn V9R2). The semi-trailer was modeled as two types - one is Multi Rigid Body Dynamics(MRBD) model, and the other Rigid-Flexible Body Dynamics(RFlex) one. The natural vibration mode and frequencies of semi-trailer body, acceleration of dummy-weight, pitch, roll and yaw of dummy-weight, swivel axle and hydropneumatic suspension cylinder support structure, and acting force of hydropneumatic suspensions etc. were obtained from the M&S. Additionally frequency analysis were performed using the data of behavior obtained from above M&S. Generally the quantitative results of RFlex are larger than them of MRBD in view of magnitude of the comparable parametric values.

Study on the Effects of System Parameters on the High Cycle Fatigue Life Based on Structural Dynamic Analysis of a Turbine Blade System (터빈 블레이드의 구조동역학해석에 근거한 시스템 인자들의 고사이클 피로수명에 대한 영향도분석)

  • Kwon, Sung-Hun;Song, Pil-Gon;Park, Jong-Hyun;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.875-879
    • /
    • 2007
  • The effects of the statistical properties of the Coulomb friction coefficients on the dynamic responses of a galloping quadruped robot are investigated in this paper. In general, the Coulomb friction coefficients are assumed to be deterministic for a controller design to achieve required motion characteristics. However, the friction coefficients between the ground and the robot legs are not constant in reality. Therefore, statistical characteristics of the friction coefficients need to be considered for a multi-body modeling of the robot galloping on the ground. The effects of the statistical properties on the dynamic responses of the quadruped robots are investigated.

  • PDF

Development and Verification of a Dynamic Analysis Model for the Current-Collection Performance of High-Speed Trains Using the Absolute Nodal Coordinate Formulation (절대절점좌표를 이용한 고속철도 집전성능 동역학 해석 모델 개발 및 검증)

  • Lee, Jin-Hee;Park, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.3
    • /
    • pp.339-346
    • /
    • 2012
  • The pre-evaluation of the current-collection performance is an important issue for high-speed railway vehicles. In this paper, using flexible multibody dynamic analysis techniques, a simulation model of the dynamic interaction between the catenary and pantograph is developed. In the analysis model, the pantograph is modeled as a rigid body, and the catenary wire is developed using the absolute nodal coordinate formulation, which can analyze large deformable parts effectively. Moreover, for the representation of the dynamic interaction between these parts, their relative motions are constrained by a sliding joint. Using this analysis model, the contact force and loss of contact can be calculated for a given vehicle speed. The results are evaluated by EN 50318, which is the international standard with regard to analysis model validation. This analysis model may contribute to the evaluation of high-speed railway vehicles that are under development.

Driving Dynamic Characteristics of Tractor-Trailer Type Transporter for Large Scale Precision Equipment (대형 정밀장비 탑재용 트랙터-트레일러형 차량의 주행 동특성)

  • Ha, Taewan;Oh, Sanghoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.687-696
    • /
    • 2019
  • To identify the driving dynamic characteristics of the Tractor-Trailer Type Transporter for mounting a large scale precision equipment, real vehicle driving tests on the 3 inch-bump-space-road were performed. And using general Dynamics Analysis Program - RecurDyn(V8R5), Dynamics M&S were carried out assuming the similar condition with real tests. Then the acceleration data obtained from real tests and M&S were analyzed and compared with each other in the part of root-mean-square-acceleration($g_{rms}$), peak-acceleration($g_{peak}$) and frequencies. In simple view of the $g_{rms}$ & $g_{peak}$, although the results of MRBD are more similar to ones of the real vehicle driving tests, but the results of RFlex have more information to get various useful dynamic characteristics.

Automotive Windshield Wiper Linkage Dynamic Modeling for Vibration Analysis (자동차 와이퍼 링키지의 진동해석을 위한 동역학 모델링)

  • Lee, Byoung-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.4
    • /
    • pp.465-472
    • /
    • 2008
  • An automotive windshield wiper system is modeled mainly for vibration analysis purpose. The model is composed of solid links, ideal joints, imperfect joints to simulate unavoidable manufacturing defects and bushings having stiffness, contact between a wiper blade and a wind screen glass, friction, a spring and an actuator. Main stream of wiper dynamics analysis has been obtaining a closed form of system of equations using Newton's or Lagrange's formula and doing a numerical simulation study to understand and predict the behavior of it. However, the modeling process is complex since a wiper system is of multibody and a contact problem occurs. When imperfection, such as dead zone of a joint and stiffness of a rubber bushing, should be included, the added complexity makes the modeling difficult. Since the imperfection is understood as main cause of problematic vibration, the dynamics model of a wiper system aiming vibration analysis should include such unavoidable manufacturing defects in the model. An open form of dynamic model of a automotive windshield wiper system with imperfect joints using a commercial software is obtained and a simulation analyssis is conducted for vibration reduction study.