• Title/Summary/Keyword: 다목적

Search Result 1,520, Processing Time 0.026 seconds

Multi-Objective Optimization of Flexible Wing using Multidisciplinary Design Optimization System of Aero-Non Linear Structure Interaction based on Support Vector Regression (Support Vector Regression 기반 공력-비선형 구조해석 연계시스템을 이용한 유연날개 다목적 최적화)

  • Choi, Won;Park, Chan-Woo;Jung, Sung-Ki;Park, Hyun-Bum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.7
    • /
    • pp.601-608
    • /
    • 2015
  • The static aeroelastic analysis and optimization of flexible wings are conducted for steady state conditions while both aerodynamic and structural parameters can be used as optimization variables. The system of multidisciplinary design optimization as a robust methodology to couple commercial codes for a static aeroelastic optimization purpose to yield a convenient adaptation to engineering applications is developed. Aspect ratio, taper ratio, sweepback angle are chosen as optimization variables and the skin thickness of the wing. The real-coded adaptive range multi-objective genetic algorithm code, which represents the global multi-objective optimization algorithm, was used to control the optimization process. The support vector regression(SVR) is applied for optimization, in order to reduce the time of computation. For this multi-objective design optimization problem, numerical results show that several useful Pareto optimal designs exist for the flexible wing.

Design and Simulation of KOMPSAT-3 Payload CCD Clock Driver (다목적실용위성3호 탑재체 CCD 제어클럭 드라이버 설계 및 시뮬레이션)

  • Kim, Young-Sun;Kong, Jong-Pil;Heo, Haeng-Pal;Park, Jong-Euk;Yong, Sang-Soon
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.49-57
    • /
    • 2009
  • The camera electronics in the KOMPSAT-3 payload provides the several control clocks in order to move the charges, which are converted from the light in the pixel, in the vertical and horizontal direction. Generally, the control clocks depend on the CCD internal design in the system. The KOMPSAT-3 payload uses the CCD controlled by 3-phase vertical clocks and 4-phase timing. The camera generates the various clocks such as the vertical clocks, the horizontal clocks, the summing clocks, the reset clocks and so on. The vertical clocks are deeply related to the camera performance and synchronized with satellite scan-rate even though they are relatively slow. Also, it gives the horizontal clocks without distortion under the very fast pixel-rate. This paper shows the design and simulation of the CCD clocks driver for the KOMPSAT-3 payload.

  • PDF

Model Updating of a RC Frame Building using Response Surface Method and Multiobjective Optimization (반응표면법 및 다목적 최적화를 이용한 철근콘크리트 건물모델의 모델 개선)

  • Lee, Sang-Hyun;Yu, Eunjong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.1
    • /
    • pp.39-46
    • /
    • 2017
  • In this paper, a model updating procedure based on the response surface method combined with the multi-objective optimization was proposed and applied for updating of the FE models representing a low-rise reinforced concrete building before and after the seismic retrofit. The dynamic properties to be matched were obtained from vibration tests using a small shaker system. By varying the structural parameters according to the central composite design, analysis results from the initial FE model using a commercial software were collected and used to produce two regression functions each of which representing the errors in the natural frequencies and mode shapes. The two functions were used as the objective functions for multi-objective optimization. Final solution was determined by examining the Pareto solutions with one iteration. The parameters representing the stiffnesses of existing concrete, masonry, connection stiffness in expansion joint, new concrete, retrofitted members with steel section jacketing were selected and identified.

Geometric Accuracy of KOMPSAT-2 PAN Data According to Sensor Modeling (센서모델링 특성에 따른 KOMPSAT-2 PAN 영상의 정확도)

  • Seo, Doo-Chun;Yang, Ji-Yeon
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.75-82
    • /
    • 2009
  • In order to help general users to analyze the KOMPSAT-2 data, an application of sensor modeling to commercial software was explained in this document. The sensor modeling is a basic step to extract the quantity and quality information from KOMPSAT-2 data. First, we introduced the contents and type of ancillary data offered with KOMPSAT-2 PAN image data, and explained how to use it with commercial software. And then, we applied the polynomial-base and refine RFM sensor modeling with ground control points. In the polynomial-base sensor modeling, the accuracy which is average RMSE of check points is highest when the satellite position was calculated by type of 1st order function and the satellite attitude was calculated by type of 1st order function for (Y axis), (Z axis) or constant for (X axis), (Y axis), (Z axis) in perspective center position and satellite attitude parameters. As a result of refine RFM sensor modeling, the accuracy is less than 1 pixel when we applied affine model..

  • PDF

Multiobjective optimization strategy based on kriging metamodel and its application to design of axial piston pumps (크리깅 메타모델에 기반한 다목적최적설계 전략과 액셜 피스톤 펌프 설계에의 응용)

  • Jeong, Jong Hyun;Baek, Seok Heum;Suh, Yong Kweon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.893-904
    • /
    • 2013
  • In this paper, a Kriging metamodel-based multi-objective optimization strategy in conjunction with an NSGA-II(non-dominated sorted genetic algorithm-II) has been employed to optimize the valve-plate shape of the axial piston pump utilizing 3D CFD simulations. The optimization process for minimum pressure ripple and maximum pump efficiency is composed of two steps; (1) CFD simulation of the piston pump operation with various combination of six parameters selected based on the optimization principle, and (2) applying a multi-objective optimization approach based on the NSGA-II using the CFD data set to evaluate the Pareto front. Our exploration shows that we can choose an optimal trade-off solution combination to reach a target efficiency of the axial piston pump with minimum pressure ripple.

Multivariate Stratification Method for the Multipurpose Sample Survey : A Case Study of the Sample Design for Fisher Production Survey (다목적 표본조사를 위한 다변량 층화 : 어업비계통생산량조사를 위한 표본설계 사례)

  • Park, Jin-Woo;Kim, Young-Won;Lee, Seok-Hoon;Shin, Ji-Eun
    • Survey Research
    • /
    • v.9 no.1
    • /
    • pp.69-85
    • /
    • 2008
  • Stratification is a feature of the majority of field sample design. This paper considers the multivariate stratification strategy for multipurpose sample survey with several auxiliary variables. In a multipurpose survey, stratification procedure is very complicated because we have to simultaneously consider the efficiencies of stratification for several variables of interest. We propose stratification strategy based on factor analysis and cluster analysis using several stratification variables. To improve the efficiency of stratification, we first select the stratification variables by factor analysis, and then apply the K-means clustering algorithm to the formation of strata. An application of the stratification strategy in the sampling design for the Fisher Production Survey is discussed, and it turns out that the variances of estimators are significantly less than those obtained by simple random sampling.

  • PDF

Construction of Multi-purpose Hazard Information Map Based on Digital Image Using Geospatial Information (지형공간정보를 활용한 수치영상기반의 다목적 재해정보지도 구축)

  • Yun, Hee-Cheon;Min, Kwan-Sik;Kim, Min-Gyu
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.3
    • /
    • pp.91-101
    • /
    • 2010
  • As global warming has caused the number of abnormal changes in climate to increase throughout the world, much damage has occurred recently in Korean Peninsula which results from unexpected heavy rains, landslides, and floods from typhoons. To prevent and cope with these annually repeated natural hazards, the overall improvements are needed, including systematic management of the existing natural hazard information and improvement of hazard information. In this study, multi-purpose hazard information map based on digital image was constructed as an effective way to enhance hazard management considering regional characteristics and hazard response capabilities in the field. Multi-purpose hazard information map with a new concept by fusion of geospatial information and hazard attribute information is able to support quick decision for hazard management making and development of hazard information system.

Multiobjective Routing and Scheduling for Vehicles Transporting Hazardous Materials (위험물 운송차량의 다목적 경로 및 스케줄 관리 방안)

  • Sin, Seong-Il
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.5
    • /
    • pp.161-172
    • /
    • 2007
  • Vehicles transporting hazardous materials can make huge damage to people, properties and environment by traffic accidents. Therefore, transporting hazardous materials is a big issue with the cutting edge technology of communications in these days. However, despite this situation, Korean government gives limited efforts for systematic management, research and investment about hazardous materials. Accordingly, this research suggests the key path finding algorithm about management of real-time schedule and routes for vehicles transporting hazardous materials. Besides, the case study is progressed in transportation networks of Seoul in order to evaluate the reality of algorithm. Specifically, time-space network transformation is performed for time window attributes. In addition, this study proposes the techniques searching for non-dominated paths considering schedule by the multiobjective shortest path algorithm based on dynamic programming in dynamic transportation networks including multiobjective attributes.

Optimization of Detention Facilities by Using Multi-Objective Genetic Algorithms (다목적 유전자 알고리즘을 이용한 우수유출 저류지 최적화 방안)

  • Chung, Jae-Hak;Han, Kun-Yeun;Kim, Keuk-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.12
    • /
    • pp.1211-1218
    • /
    • 2008
  • This study is for design of the detention system distributed in a watershed by the Multi-Objective Genetic Algorithms(MOGAs). A new model is developed to determine optimal size and location of detention. The developed model has two primary interfaced components such as a rainfall runoff model to simulate water surface elevation(or flowrate) and MOGAs to get the optimal solution. The objective functions used in this model depend on the peak flow and storage of detention. With various constraints such as structural limitations, capacities of storage and operational targets. The developed model is applied at Gwanyang basin within Anyang watershed. The simulation results show the maximum outlet reduction is occurred at detention facilities located in upper reach of watershed in the peak discharge rates. It is also reviewed the simultaneous construction of an off-line detention and an on-line detention. The methodologies obtained from this study will be used to control the flood discharges and to reduce flood damage in urbanized watershed.

Multi-Objective Job Scheduling Model Based on NSGA-II for Grid Computing (그리드 컴퓨팅을 위한 NSGA-II 기반 다목적 작업 스케줄링 모델)

  • Kim, Sol-Ji;Kim, Tae-Ho;Lee, Hong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.7
    • /
    • pp.13-23
    • /
    • 2011
  • Grid computing is a new generation computing technology which organizes virtual high-performance computing system by connecting and sharing geographically distributed heterogeneous resources, and performing large-scaled computing operations. In order to maximize the performance of grid computing, job scheduling is essential which allocates jobs to resources effectively. Many studies have been performed which minimize total completion times, etc. However, resource costs are also important, and through the minimization of resource costs, the overall performance of grid computing and economic efficiency will be improved. So in this paper, we propose a multi-objective job scheduling model considering both time and cost. This model derives from the optimal scheduling solution using NSGA-II, which is a multi objective genetic algorithm, and guarantees the effectiveness of the proposed model by executing experiments with those of existing scheduling models such as Min-Min and Max-Min models. Through experiments, we prove that the proposed scheduling model minimizes time and cost more efficiently than existing scheduling models.