• Title/Summary/Keyword: 다목적설계최적화

Search Result 107, Processing Time 0.027 seconds

Study of AC Filter Design considering Harmonic Mitigation for HVDC System (고조파 저감을 고려한 HVDC System용 AC 필터 설계 방법에 관한 연구)

  • Chyun, Yi-Kyung;Kim, Hyun;Choi, Yong-Kil;Lee, Uk-Wha
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.209-210
    • /
    • 2015
  • High Voltage Direct Current(HVDC) System용 AC 필터는 특정 고조파 영역에서 낮은 임피던스를 제공하여 AC 계통으로 유입되는 고조파를 억제시킴과 동시에 무효전력의 공급원으로서의 역할도 수행한다. 대부분의 전류형 HVDC System은 12개의 Pulse로 동작하기 때문에 $12n{\pm}1$차의 특성고조파를 발생시키는데 HVDC System에서는 이러한 특성고조파들을 저감시키기 위한 Harmonic AC Filter가 주로 사용된다. 본 논문에서는 HVDC System용 AC 필터를 설계할 때 고조파 저감을 고려한 다목적 최적화 알고리즘을 제시함으로써, 향후 시스템의 안전성과 효율성 측면에서 기여할 수 있는 실제 HVDC System용 AC 필터 설계 적용에 큰 도움이 될 것으로 기대된다.

  • PDF

Set-Based Multi-objective Design Optimization at the Early Phase of Design(The First Report) : Theory and Design Support System (초기 설계단계에서의 셋 베이스 다목적 설계 최적화(제1보) : 이론 및 설계지원 시스템)

  • Nahm, Yoon-Eui
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.2
    • /
    • pp.112-120
    • /
    • 2011
  • The early phase of design intrinsically contains multiple sources of uncertainty in describing design, and nevertheless the decision-making process at this phase exerts a critical effect upon drawing a successful design. This paper proposes a set-based design approach for multi-objective design problem under uncertainty. The proposed design approach consists of four design processes including set representation, set propagation, set modification, and set narrowing. This approach enables the flexible and robust design while incorporating designer's preference structure. In contrast to existing optimization techniques, this approach generates a ranged set of design solutions that satisfy changing sets of performance requirements.

Global Shape Optimization of Airfoil Using Multi-objective Genetic Algorithm (다목적 유전알고리즘을 이용한 익형의 전역최적설계)

  • Lee, Ju-Hee;Lee, Sang-Hwan;Park, Kyoung-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.10 s.241
    • /
    • pp.1163-1171
    • /
    • 2005
  • The shape optimization of an airfoil has been performed for an incompressible viscous flow. In this study, Pareto frontier sets, which are global and non-dominated solutions, can be obtained without various weighting factors by using the multi-objective genetic algorithm An NACA0012 airfoil is considered as a baseline model, and the profile of the airfoil is parameterized and rebuilt with four Bezier curves. Two curves, front leading to maximum thickness, are composed of five control points and the rest, from maximum thickness to tailing edge, are composed of four control points. There are eighteen design variables and two objective functions such as the lift and drag coefficients. A generation is made up of forty-five individuals. After fifteenth evolutions, the Pareto individuals of twenty can be achieved. One Pareto, which is the best of the . reduction of the drag furce, improves its drag to $13\%$ and lift-drag ratio to $2\%$. Another Pareto, however, which is focused on increasing the lift force, can improve its lift force to $61\%$, while sustaining its drag force, compared to those of the baseline model.

Multi-objective Optimization of Fuzzy System Using Membership Functions Defined by Normed Method (노음방법에 의해 정의된 소속함수를 사용한 퍼지계의 다목적 최적설계)

  • 이준배;이병채
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.1898-1909
    • /
    • 1993
  • In this paper, a convenient scheme for solving multi-objective optimization problems including fuzzy information in both objective functions and constraints is presented. At first, a multi-objective problem is converted into single objective problem based on the norm method, and a merbership function is constructed by selecting its type and providing the parameters defined by the norm method. Finally, this fuzzy programming problem is converted into an ordinary optimization problem which can be solved by usual nonlinear programming techniques. With this scheme, a designer can conveniently obtain pareto optimal solutions of a fuzzy system only by providing some parameters corresponding to the importance of the objectiv functions. Proposed scheme is simple and efficient in treating multi-objective fuzzy systems compared with and method by with membership function value is provided interactively. To show the validity of the scheme, a simple 3-bar truss example and optimal cutting problem are solved, and the results show that the scheme is very useful and easy to treat multi-objective fuzzy systems.

Optimum Design of Endosseous Implant in Dentistry by Multilevel Optimization Method (다단계 최적화 기법을 이용한 치과용 골내 임플란트의 형상 최적 설계)

  • Han, Jung-Suk;Seo, Ki-Youl;Choi, Joo-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.144-151
    • /
    • 2003
  • In this paper, an optimum design problem for endosseous implant in dentistry is studied to find best implant design. An optimum design problem is formulated to reduce stresses arising at the cortical as well as cancellous bones, in which sufficient design parameters are chosen fur design definition that encompasses major implants in popular use. Optimization at once (OAO) with the large number of design variables, however, causes too costly solution or even failure to converge. A concept of multilevel optimization (MLO) is employed to this end, which is to group the design variables of similar nature, solve the sub-problem of smaller size fur each group in sequence, and this is iterated until convergence. Each sub-problem is solved based on the response surface method (RSM) due to its efficiency for small sized problem. Favorable solution is obtained by the MLO, which is compared to both solutions made by RSM and sequential quadratic programming (SQP) in the OAO problem.

Set-Based Multi-objective Design Optimization at the Early Phase of Design (The Second Report) : Application to Automotive Side-Door Impact Beams (초기 설계단계에서의 셋 베이스 다목적 설계 최적화(제2보) : 자동차 사이드 도어 임팩트 빔에의 적용)

  • Nahm, Yoon-Eui
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.3
    • /
    • pp.8-15
    • /
    • 2011
  • The computer-based simulation tools are currently used overwhelmingly to simulate the performance of automotive designs. Then, the search for an optimal solution that satisfies a number of performance requirements usually involves numerous iterations among several simulation tools. Therefore, meta-modeling techniques are becoming widely used to build approximations of computationally expensive computer analysis tools. The set-based approach proposed in the first report of a four-part paper has been a test bed for the innovation of vehicle structure design process in the Structural Design and Fabrication Committee of JSAE(Society of Automotive Engineers of Japan). In the second report, the proposed design approach is illustrated with a side-door impact beam design example using meta-modeling techniques.

Set-Based Multi-objective Design Optimization at the Early Phase of Design (The Third Report) : Application to Environment-Conscious Automotive Side-Door Assembly (초기 설계단계에서의 셋 베이스 다목적 설계 최적화(제3보) : 환경문제를 고려한 자동차 사이드 도어 어셈블리에의 적용)

  • Nahm, Yoon-Eui
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.4
    • /
    • pp.138-144
    • /
    • 2011
  • The design flexibility and robustness have become key factors to handle various sources of uncertainties at the early phase of design. Even though designers are uncertain about which single values to specify, they usually have a preference for certain values over others. In the first and second reports of a four-part paper, a set-based design approach has been proposed for achieving design flexibility and robustness while capturing designer's preference, and its effectiveness has been illustrated with a simple vehicle side-door impact beam design problem. This report presents the applicability of the proposed design approach to the large-scale multi-objective design optimization with a successful implementation of real vehicle side-door structure design.

Simulation Analysis to Optimize the Management of Military Maintenance Facility (군 정비시설 운용 최적화를 위한 시뮬레이션 분석 연구)

  • Kim, Kyung-Rok;Rhee, Jong-Moon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.2724-2731
    • /
    • 2014
  • As the future national defense plan of government focus on advanced weapon system, military maintenance facility becomes more important. However, military maintenance facility has been managed by director's experience and simple mathematical calculation until now. Thus, the optimization for the management of military maintenance facility is suggested by more scientistic and logical methods in this study. The study follows the procedure below. First, simulation is designed according to the analysis of military maintenance facility. Second, independent variable and dependent variable are defined for optimization. Independent Variable includes the number of maintenance machine, transportation machine, worker in the details of military maintenance facility operation, and dependent variable involves total maintenance time affected by independent variable. Third, warmup analysis is performed to get warmup period, based on the simulation model. Fourth, the optimal combination is computed with evolution strategy, meta-heuristic, to enhance military maintenance management. By the optimal combination, the management of military maintenance facility can gain the biggest effect against the limited cost. In the future, the multipurpose study, to analyze the military maintenance facility covering various weapon system equipments, will be performed.

Development of Multi-Purpose Containers for Managing LLW/VLLW from D&D (제염해체 방사성폐기물 관리를 위한 다목적 용기의 개발)

  • Lee, Jaesol;Park, Jeaho;Sung, Nakhoon;Yang, Gehyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.2
    • /
    • pp.157-168
    • /
    • 2016
  • Radioactive waste container designs should comply with the requirements for safety (i.e., transportation, storage, disposal) and other criteria such as economics and technology. These criteria are also applicable to the future management of the large amount of LLW and VLLW to arise from decontamination and decommissioning (D&D) of nuclear power plants, which have different features compared to that of wastes from operation and maintenance (O&M). This paper proposes to develop a set of standard containers of multi-purpose usage for transportation, storage and disposal. The concepts of the containers were optimized for management of D&D wastes in consideration of national system for radioactive waste management, in particular the Gyeongju Repository and associated infrastructures. A set of prototype containers were designed and built : a soft bag for VLLW, two metallic containers for VLLW/LLW (a standard IP2 container for sea transport and ISO container for road transport). Safety analyses by simulation and tests of these designs show they are in compliance with the regulatory requirements. A further development of a container with concrete is foreseen for 2016.

Optimization of Tire Contour by using GA and DOE (실험계획법과 유전자 알고리듬을 이용한 타이어 형상설계)

  • Lee, Dong-Woo;Kim, Seong-Rae;Cho, Seok-Swoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1063-1069
    • /
    • 2011
  • Today, tire performance becomes better as vehicle performance increases. Driviability, endurance, comfortability, noise, and antiwear performance is influenced by tire contour. Tire design method is developed by high-tech engineering technology. Among theses studies, tire performance improvement through tire contour optimization is performed by many vehicle investigator. Therefore, in the present study, an optimum contour design system satisfying the tire performance requirements is constructed by regression analysis and genetic algorithm by using design of experiments.