• Title/Summary/Keyword: 다대포

Search Result 34, Processing Time 0.021 seconds

Exploration of Submarine Spring Along the Coastal Areas of Busan Metropolitan City (부산 인근 연안해역에서 해저 용천수 유출 탐사)

  • Lee, Yong-Woo;Khim, Boo-Keun;Kim, Sunghan
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.4
    • /
    • pp.178-185
    • /
    • 2013
  • We measured salinity and $^{222}Rn$ concentration to explore submarine spring along the coastal areas (Mundongri, Icheon-ri, Jukseong-ri, Daebyeon-ri, Yeonhwa-ri, and Dadae-po) including Ilkwang Bay of Busan Metropolitan City in 2009 and 2010. Before field observation, we selected the potential and possible locations of submarine spring based on the lineament distribution and rose diagram analysis. Salinity and radon concentration were measured within the 1~2 km from the coastal lines. Radon activity decreased gradually from onshore to offshore. Vertical profiles of salinity at some stations showed lateral transport of water mass characterized by low salinity. Vertical profiles of salinity in the Ilkwang Bay, which is a unique bay in the south-eastern coastal area of Busan Metropolitan City, also showed the occurrence of low salinity in the bottom seawater. Our results suggest the possible occurrence of submarine discharge of fresh groundwater in the coastal areas around Busan Metropolitan City. In the future, intensive research should be conducted for the exploration methods of submarine spring as well for the possible utility of submarine groundwater as alternative water resources.

A Study on the Risk Assessment by Obstacles in Ship's Passage (선박 통항로 내 장해물에 따른 위험도 평가에 관한 연구)

  • Kim, Ni-Eun;Park, Young-Soo;Park, Sang-Won;Kim, So-Ra;Lee, Myoung-Ki
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.244-253
    • /
    • 2022
  • Recently, installation projects of structures such as offshore wind farms have been increasing, and the installation of such marine obstacles could affect ships that pass nearby. Therefore, the purpose of this study was to quantitatively evaluate the risk posed to passing ships due to obstacles in their passage. Hence, parameters that affected the risk were selected, and scenarios were set based on the parameters. The scenarios were evaluated through the ES model, which is a risk assessment model, and we confirmed that the risk ratio increased as the size of the obstacle increased, the safe distance from the obstacle increased, the speed of ship decreased, and the traffic volume increased. Additionally, we found that when the traffic flow direction was designated, the risk ratio was lower than that of general traffic flow. In this study, we proposed a generalization model based on the results of the performed scenarios, applied it to the Dadaepo offshore wind farm, and demonstrated that the estimation of the approximate risk ratio was possible through the generalization model. Finally, we judged that the generalization model proposed in this study could be used as a preliminary reference for the installation of marine obstacles.

Annual Reprodutive Cycle of the Jackknife Clams, Solen strictus and Solen gordonis (맛조개, Solen strictus와 붉은맛, Solen gordonis의 생식년주기)

  • CHUNG Ee-Yung;KIM Hyung-Bae;LEE Taek-Yuil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.19 no.6
    • /
    • pp.563-574
    • /
    • 1986
  • The structure of gonads, gametogenesis and reproductive cycle of the jackknife clams, Solen strictus and Solen gordonis were investigated mainly by histological observation. The first species used were monthly sampled at the coastal area of Dadaepo, Pusan, Korea and Naechodo, Kunsan, Korea for one year from February 1982 to January 1983. The second species were monthly sampled at the sand beach of Dadaepo, Pusan, Korea, from February 1982 to January 1983. Sexualities of Solen strictus and Solen gordonis are dioecious, and these species are oviparous. The gonads are irregularly arranged from the subregion of mid-intestinal gland in visceral cavity to reticular connective tissue of foot. The ovary was composed of a number of small ovarian sacs and the testis was composed of several testicular lobuli which from the tubular structure. Early multiplicating oogonium was about $10{\mu}m$ in diamater. Nucleus and nucleolus, at that time, were distinct in appearance. Each of the early growing oocytes made an egg-stalk, connected to the germinal epithelium of the ovarian sac. A great number of undifferentiated mesenchymal tissue and eosinophilic granular cells are abundantly distributed in the ovarian sacs in the early development stages. With the further development of gonad, these tissue and cells gradually disappeared. Then the undifferentiated mesenchymal tissue and eosinophilic granular cells function as nutritive cells in the formation and development of the early stage germ cells. Mature oocytes were free in the lumen of ovarian sacs and gradually become round or oval. Ripe oocyte was about 80 to $90{\mu}m$ in diameter. With the further development of testis, each of the testicular lobuli formed stratified layers composed of spermatogonia, spermatocytes, spermatids and spermatozoa in groups on the germinal epithelium. After spawning, the gonad gradually degenerated, and disorganized completely. Then new differentiated tissues were rearranged next year. The annual reproductive cycle of those species could be classified into five stages; multiplicative, growing, mature, spent, degenerative and resting stage. It seems that the spawning season is closely related to the water temperature, and the spawning of Solen strictus occurs from June to July at above $20^{\circ}C$ in water temperature. The peak spawning season appeared in June at Dadaepo and in July at Kunsan, The spawning of Solen gordonis occurs from May to June with the peak spawning season in June. Percentages of the first maturity in female of Solen strictus ranging from 5.1-6.0 cm and 7.1-8.0 cm in shell length were $50\%$ and $100\%$, respectively.

  • PDF

Reproductive Biology of a Shad, Konosirus punctatus(TEMMINCK et SCHLEGEL) (전어, Konosirus punctatus의 생식생물학적 연구)

  • KIM Hyung-Bae;LEE Taek-Yuil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.3
    • /
    • pp.206-218
    • /
    • 1984
  • The gonadal development and gametogenesis of shad, Konosirus, punctatus (TEMMINCK et SCHLEGEL) were studied by comparing with various quantitative indices, such as seasonal changes of gonadosomatic index, fatness, egg-diameter composition, first maturing size, and by comparing with histological changes of gonad and gonadotrophs(GTH) in pituitary. The materials were monthly sampled from Dadaepo at the estuary of the Nakdong river in Korea from September, 1982 to October, 1983. The ovary of shad is a pair of sac-shaped organs revered with a fibromuscular capsule and consisting of numerous sacs. The type of testicular structure is lobular type with development of germ cells, mesenchymal tissue on the lobuli. The gonadosomatic index (GSI) is rather low till March, but increases in April and reaches to peak in June in females and May in males. And it suddenly falls in July. The gonads become active on the increase of water temperature and spawning season ends before high water temperature. After spawning, the small oocytes continue to remain as they are untill the growing period next year. The reproductive cycle includes the successive stages of growing from March to April, mature from April to May, ripe and spawning in June, and recovery and resting from July to February next year. In egg-diameter composition of an ovary taken in the spawning season, 2-3 modes were recognized with some batches shown in an ovary. An individual shad spawns twice or more in a month-spawning season. The individual spawning interval is estimated to be ten days or less. Changes of fatness are corelated with those of water temperature that affect on the condition of feeding, but less corelated with spawning. The percentage of mature of female and male fish, are $50\%$ in 17.0-18.0 cm and $100\%$ in 18.0-19.0 cm. GTH cells are activated from growing period and decrease their activity at pre-spawning season with peak activity for mature period.

  • PDF