• Title/Summary/Keyword: 다단

Search Result 993, Processing Time 0.03 seconds

A Study on the Through-Flow Analysis for a Multi-Stage Axial Turbine Considering Leakage Flows (누설 유동을 고려한 다단 축류 터빈의 유선곡률해석법에 대한 연구)

  • Kim, Sangjo;Kim, Kuisoon;Son, Changmin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.5
    • /
    • pp.1-12
    • /
    • 2018
  • The streamline curvature method is essentially used for the design procedure of multi-stage axial turbines. Moreover, by using this method, it is possible to consider the turbine loss characteristics for real operating conditions at an early design stage. However, there is not enough relevant research in South Korea to support this. In the present study, the streamline curvature method and the empirical equation for calculating the mixing loss are employed to predict the performance of a multi-stage axial turbine with leakage flows. The proposed method is applied to the prediction of the performance of a five-stage axial turbine with leakage flows, as used for an industrial gas turbine of 86 MW in South Korea. The calculation result is compared with 3D CFD data, and the advantages and limitations of the streamline curvature method are described.

The Development of Multi Stage Separation Ball Mill for Producing Recycled Aggregate (순환 골재 생산을 위한 다단 박리형 볼밀 시스템 개발)

  • Lee, Han-Sol;Yu, Myouing-yuol;Lee, Hoon
    • Resources Recycling
    • /
    • v.30 no.5
    • /
    • pp.17-24
    • /
    • 2021
  • Natural aggregate regular exploitation has led to environmental and resource depletion issues; consequently, construction waste has become an important raw material in the supply of aggregate smoothly. The recycled aggregate produced in the most of recycled aggregate processing company in Korea has a high adhesion ratio of cement paste and mortar, which affects the water absorption ratio and density. Therefore, the quality of recycled aggregate needs to be improved. In this study, we improved the quality of recycled aggregate through the use of a multistage separation ball mill. This ball mill has a sieve which protects the ball mix and improves the motion. Products produced by using multistage separation ball mill were compared with various quality standard for utilization as recycle aggregate. Finally, we confirmed that the multistage separation ball mill can efficiently separate cement paste and mortar from natural aggregate and that it is suitable for the production of recycled aggregates.

Case Study on NOx Emissions from Cement Kiln before and after Applying Multi-stage Combustion Technology (다단연소 기술 적용 전후 시멘트 소성설비의 NOx 배출 사례 연구)

  • Jae-Won, Choi;Ju-Ik Back;Jang-Jung Kim;Phil-Sung Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.267-275
    • /
    • 2023
  • The cement industry has been contributing to solve the wastes problem by using various combustible wastes as alternative fuel to replace natural coal. To use more alternative fuels such as waste plastics, in the cement manufacturing process, it is necessary to stably burn alternative fuels and reduce air emissions such as NOx. This study is a case study on the multi-stage combustion calciner process, which is a technology that decreases the amount of NOx while increasing the use of alternative fuels. This study is a case study on the multi-stage combustion process, a technology that reduces the amount of harmful air emissions such as NOx while increasing the use of alternative fuels. Along results of comparing before and after applying the technology to actual cement manufacturing facilities, the amount of coal consumption decreased by 38 %, waste plastics consumption increased by 122 %, and NOx emissions decreased by 17 %. Results show that increasing the use of alternative fuels and reducing NOx emissions by multi-stage combustion is effective.

Comparison of Color Quality, Winter Color, and Spring Green-up among Major Turfgrasses Grown under Three Different Soil Systems (세 종류 잔디지반 구조에서 주요 초종의 엽색품질, 동절기 색상 및 이른 봄 녹화 특성비교)

  • Kim, Kyoung-Nam
    • Horticultural Science & Technology
    • /
    • v.31 no.3
    • /
    • pp.259-268
    • /
    • 2013
  • This study was carried out to evaluate the visual turfgrass's color quality, winter color, and spring green-up under three different soil systems and to make a practical use for sports turf design and construction. Several turfgrasses were evaluated in multi-layer, USGA and mono-layer systems. Turfgrass entries in the study comprised of 3 cultivars from Korean lawngrass (Zoysia japonica Steud.) of typical warm-season grass (WSG) and 3 blends and 3 mixtures from Kentucky bluegrass (KB, Poa pratensis L.), perennial ryegrass (PR, Lolium perenne L.), and tall fescue (TF, Festuca arundinacea Schreb.) of cool-season grass (CSG). Significant differences were observed in the turfgrass's color quality, winter color, and spring green-up in the study. Seasonal variation of visual turf color greatly occurred according to soil systems and turfgrasses. Multi-layer and USGA systems were highly associated with better visual color ratings, as compared with mono-layer system. Regardless of soil system, visual turf color in all entries was better from spring to fall than in winter. Great color differences were observed during a period of early December to early spring. CSG produced a better color quality over WSG in any soil system. Overall color ratings for CSG were KB > PR > Mixtures > TF. As for a winter color, its ranking was USGA > multi-layer > mono-layer system. No difference was found in winter among cultivars of Korean lawngrass, being completely brown, but great differences among CSG. Rated best for winter color was PR, followed by CSG mixtures, KB and finally TF in order. It was generally conceded that fast green-up in spring was greatly related with multi-layer over mono-layer system and also CSG over WSG. Among CSG, TF had a fastest green-up. PR was also fast in green-up, but poor in color uniformity. KB, however, was the slowest due to shallow rooting system, when compared with other CSGs. These results demonstrate color differences were greatly variable according to soil systems and also among turfgrass species. A precise decision should be made in selecting turfgrass species and soil system. Multi-layer and USGA systems were considered as the suitable one for turfgrass color quality, winter color and spring green-up. It is a great necessity to combine proper soil system, right turfgrass species, and appropriate mixing rates by a concept-oriented approach, when establishing garden, parks, soccer field, and golf courses and so on.

Integrity evaluation of grouting in umbrella arch methods by using guided ultrasonic waves (유도초음파를 이용한 강관보강다단 그라우팅의 건전도 평가)

  • Hong, Young-Ho;Yu, Jung-Doung;Byun, Yong-Hoon;Jang, Hyun-Ick;You, Byung-Chul;Lee, Jong-Sub
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.187-199
    • /
    • 2013
  • Umbrella arch method (UAM) used for improving the stability of the tunnel ground condition has been widely applied in the tunnel construction projects due to the advantage of obtaining both reinforcement and waterproof. The purpose of this study is to develop the evaluation technique of the integrity of bore-hole in UAM by using a non-destructive test and to evaluate the possibility of being applied to the field. In order to investigate the variations of frequency depending on grouted length, the specimens with different grouted ratios are made in the two constraint conditions (free boundary condition and embedded condition). The hammer impact reflection method in which excitation and reception occur simultaneously at the head of pipe was used. The guided waves generated by hitting a pipe with a hammer were reflected at the tip and returned to the head, and the signals were received by an acoustic emission (AE) sensor installed at the head. For the laboratory experiments, the specimens were prepared with different grouted ratios (25 %, 50 %, 75 %, 100 %). In addition, field tests were performed for the application of the evaluation technique. Fast Fourier transform and wavelet transform were applied to analyze the measured waves. The experimental studies show that grouted ratio has little effects on the velocities of guided waves. Main frequencies of reflected waves tend to decrease with an increase in the grouted length in the time-frequency domain. This study suggests that the non-destructive tests using guided ultrasonic waves be effective to evaluate the bore-hole integrity of the UAM in the field.

A Study on Swirl Flow and Combustion Characteristics of Air Staged Low NOx Burner (다단 공기 공급 저 NOx 버너의 선회유동 및 연소특성에 관한 실험적 연구 - 다단공기공급에 의한 연소특성(I) -)

  • Shin, Myung-Chul;Ahn, Je-Hyun;Kim, Se-Won
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.1
    • /
    • pp.25-35
    • /
    • 2003
  • The objective of this research is to determine generally applicable design principles for the development of internally staged combustion devices. Utilizing a triple annulus combustor, the detailed combustion characteristics are studied. For this triple air staged combustor, the angular momentum weighted by it#s swirl number and air distribution ratio was observed to be the critical criteria of NOx emission. An internal recirculation zone which develops on the centerline of the flame immediately downstream of the burner entraps the fuel into a fuel rich eddy. Then sufficient heat must be transferred from the flame via radiation to the chamber heat transfer surfaces, such that the peak flame temperatures are suppressed when the second air is introduced. It is experimentally found out that the total NOx emission level in this type of burner is below 50ppm(3% Ref. O2) at optimum operating conditions.

  • PDF

Ultra-wideband BSF Using Multi-stage FSCS (다단 FSCS를 이용한 초광대역 특성의 대역저지 필터)

  • Yun, Tae-Soon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.439-444
    • /
    • 2020
  • In this paper, the analysis of the FSCS (frequency-selected coupling structure) as the coupling coefficient and multi-stage FSCS for enhanced bandstop bandwidth is suggested. The FSCS is composed by the connected coupled-line and open-stub. Basically, the resonance frequency of the FSCS is given by the electrical length of the stub, and the bandwidth is controlled by the coupling coefficient. Multi-stage FSCS is made by addition of another FSCS with the half electrical length. Manufactured bandstop filter using 3 stage FSCS is measured with the stopband of 177.3% and the maximum return loss of 1dB.

Line Current Characteristics of Multilevel H-Bridge Inverters: Part I - Connection of Input Transformer and Phase Shift Characteristics (다단 H-브릿지 인버터의 입력전류특성 (I) - 입력단 변압기 결선과 위상이동특성)

  • Jeong, Seung-Gi
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.229-236
    • /
    • 2008
  • Recently, multilevel H-bridge inverters have become popular in medium to high power ac drive applications. One of significant advantages of them is low harmonic contents in their input line currents thanks to the transformer with multiple phase-shifted secondary windings. This paper attempts to provide basic guidelines for the design of the phase shifting transformer windings and theoretical analysis of input line current harmonics of H-bridge inverters. The part I provides the derivation of basic relationships between input and output current of the transformer and the relationship between the phase shifting characteristics and design aspects of the transformer.

Line Current Characteristics of Multilevel H-Bridge Inverters: Part II - Harmonic Reduction with Multiple Transformer Windings (다단 H-브릿지 인버터의 입력전류특성(II) - 다중 변압기 결선에 의한 고조파 저감)

  • Jeong, Seung-Gi
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.237-245
    • /
    • 2008
  • Recently, multilevel H-bridge inverters have become popular in medium to high power ac drive applications. One of significant advantages of them is low harmonic contents in their input line currents thanks to the transformer with multiple phase-shifted secondary windings. This paper attempts to provide basic guidelines for the design of the phase shifting transformer windings and theoretical analysis of input line current harmonics of H-bridge inverters. The part II is devoted to the analysis of the harmonic characteristics of the input line current, providing mathematical background for the equidistant phase-shifting angle distribution policy for harmonic elimination.

A Study on the Simulation Algorithm of the Multistage Interconnection Networks (다단상호 접속망의 Simulation Algorithm 개발에 관한 연구)

  • Lee, Eun-Seol;Kim, Dae-Ho;Lim, Chae-Tak
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.5
    • /
    • pp.71-78
    • /
    • 1989
  • To estimate a performance of MIM's a network modeling method and a simulation algorithm are proposed, and this algorithm is programmed by C language. Especially, state variables are defined to process many concurrent requests ar inputs and a data structure, which contains network informations, is proposed to keep track of each stage. This simulation can be applied to computers which are designed for sequential processing. This method can be used to estimate a performance of MIN's instead of using complex mathematical method.

  • PDF