• 제목/요약/키워드: 다단단조

검색결과 39건 처리시간 0.028초

인텀샤프트 일체형 유니버셜 파이프 조인트용 다단조금형의 단조공정해석 (Forging Process Analysis of the Multi-forging Die for the Unified Universal Pipe Joint of the Intermediate Shaft)

  • 권혁홍;문관진;송승은
    • 한국생산제조학회지
    • /
    • 제19권1호
    • /
    • pp.33-41
    • /
    • 2010
  • This study was aimed at the design of the dies for the unified pipe joint of the intermediate shaft using the computer simulation to shorten the period of production, on the basis of the process planning which was designed by the field experts. In the computer simulation, 'Deform-3d' and 'eesy-DieOpt' have been used, which are the commercial process analysis and die design program. Through the process analysis, we could know the propriety of the forming process, the inner pressure of the die and the suitable fitting pressure between the insert and the sleeve which was not showing any positive tangential stresses in the insert. Through the simulation of die design, we could know the number of the stress ring, the diameter ratios, the stresses of the die, the shrink fitting tolerance and temperature in the condition of the already determined maximum outer die diameter of the multi-stage former. The validity of the die design using the computer simulation was analyzed by the experiments and the results were satisfactory. As the results of this study, the new and easy die design system for multi-forging has been developed.

알루미늄 이너 타이로드 소켓의 냉간다단단조 유효성 검증 (Effectiveness Validation on Cold Multi-Stage Forging of Aluminum Inner Tie Rod Socket)

  • 박재욱;최종원;정의은;윤일채;강명창
    • 한국기계가공학회지
    • /
    • 제21권1호
    • /
    • pp.49-55
    • /
    • 2022
  • Recently, the automobile industry has continued to demand lighter materials owing to international environmental regulations and increased convenience. To address this demand, aluminum parts have increased in popularity and are mainly developed and produced through hot forging and cold pressing. However, because this method has low yield and low production efficiency, a new manufacturing method is desirable. In this study, the water capacity efficiency of an aluminum inner tie rod socket was investigated using cold forging that provided a high yield and excellent production efficiency. Mechanical properties were derived through tensile testing of 6110A aluminum materials, and critical fracture factor and process analysis based on experimental data were carried out. The optimized process was applied as a prototype using cold multi-stage forging, and based on the derived results, the formability, productivity, and material efficiency of aluminum inner tie rod socket parts using this cold forging process was verified.

다단냉간단조 비가공 타입에서 볼하우징 인서트 다이의 금형설계 검증 (Mold-design Verification of Ball Housing Insert Die in Non Processing Type Multi-stage Cold Forging)

  • 황원석;최종원;정의은;강명창
    • 한국기계가공학회지
    • /
    • 제20권12호
    • /
    • pp.8-15
    • /
    • 2021
  • Cold forging is a method in which molding is performed at room temperature. It has a high material recovery rate and dimensional precision and produces excellent surface quality, and it is mainly used for the production of bolted or housing products. The lifespan of cold forging molds is generally determined by the wear of the mold, plastic deformation of the mold, and fatigue strength. Cold forging molds are frequently damaged due to fatigue destruction rather than wear and plastic deformation in a high-temperature environment as it is molded at room temperature without preheating the raw material and mold. Based on the results analyzed through FEM, an effective mold structure design method was proposed by analyzing the changes in tensile and compressive stresses on molds according to the number of molds and reinforcement rings and comparing the product geometry and mold stress using three existing mold models.

컴퓨터를 이용한 냉간포머단조 공정설계 (Computer Aided Process Design in Cold-Former Forging)

  • 임창수;서성렬;이민철;김주현;전만수
    • 한국정밀공학회지
    • /
    • 제15권10호
    • /
    • pp.51-57
    • /
    • 1998
  • In this paper, a computer aided process design technique, utilizing a forging simulator and a commercial CAD software, is presented together with its related design system for cold-former forging of ball joints. The forging sequence design is carried out through user-computer interaction by using design templates, design database, experience or knowledge-based rules and some basic laws found in the literature. The forging simulation technique is used to verify the process design. The detail designs including die set drawings and die manufacturing information are automatically generated. It has been shown that the engineer ing and design productivity is much improved by the presented approach in the practical standpoint of process design engineers.

  • PDF

스프링부착 금형을 가진 다단 축대칭 단조공정의 유한요소해석-단조시뮬레이터 공정적용 사례(3) (Finite Element Analysis of a Multi-Stage Axisymmetric Forging Process Having A Spring-Attached Die)

  • 전만수;이석원;정재헌
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1996년도 춘계학술대회논문집
    • /
    • pp.93-100
    • /
    • 1996
  • In this paper, a computer simulationtechnique for the forging process having a spring-attached die was presented . The penalty rigid-thermoviscoplastic finite element method was empolyed together with an interatively force-balancing method, in which the convergence was achieved when the forming load and the spring reaction force are in equilibrium within the user-specified allowable accuracy. The force balance was controled by adjusting the velocity of the spring-attched die. th minimize the number of internations, a velocity estimating schemewas proposed. Two application examples found in the related company were given. In the first application example, the predicted metal folw lines were compared with the acturally forged ones. in the second example, a hot forging process with a spring-attached die was simulated and the analyzed results were discussed in order to investigated the effects of spring-attached dies on the metal flow lines and the forming loads.

  • PDF

다단 냉간단조품의 자동공정설계시스템 (Automated Forming Sequence Design System for Multistage Cold Forging Parts)

  • Park, J.C.;Kim, B.M.;Kim, S.W.;Kim, H.K.
    • 한국정밀공학회지
    • /
    • 제11권4호
    • /
    • pp.77-87
    • /
    • 1994
  • This paper deals with an automated forming sequence design system by which designers can determine desirable operation sequences even if they have little experience in the design of cold forging process. The forming sequence design in the cold forging is very important and requires many kinds of technical and empirical knowledge. They system isproposed, which generates forming sequence plans for the multistage cold forging of axisymmtrical solid products. Since the process of metal forming can be considered as a transformation of geometry, treatment of the geometry of the product is a key in planning process. To recognize the geometry of the product section, section entity representation and primitive geometries were used. Section entity representation can be used for the calculation of maximum diameter, maximum height, and volume. Forming sequence for the part can be determined by means of primitive geometries such as cylinder, cone, convex, and concave. By utilizing this geometrical characteristics (diameter, height, and radius), the product geometry is expressed by a list of the priitive geometries. Accordingly the forming sequence design is formulated as the search problem which starts with a billet geometry and finishes with a given product one. Using the developed system, the sequence drawing with all dimensions, which includes the proper sequence of operations for the part, is generated under the environment of AutoCAD. Based on the results of forming sequence, process variables(strain, punch pressure, die inner pressure, and forming load) are determined.

  • PDF

다단단조 CV JOINT 생산품의 유한요소해석 (Process analysis of multi-stage forging by using finite element method)

  • 박광수;김봉준;권승오;문영훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.399-402
    • /
    • 2006
  • The outer race of CV(constant velocity) joint is an important load-supporting automotive part, which transmits torque between the transmission gear box and driving wheel. The outer race is difficult to forge because its shape is very complicated and the required dimensional tolerances are very small. Traditional warm and cold forging methods have their own limitations to produce such a complex shaped part; warm forging requires complex system with relatively higher manufacturing cost, while cold forging is not applicable to materials with limited formability. Therefore, multistage forging may be advantageous to produce complex shaped parts. In order to build a multistage forging system, it is necessary to characterize mechanical properties in response to system design parameters such as temperature, forging speed and reduction. For the analysis of formability of multistage forging process, finite element method(FEM) has been used for the process analysis. As a model case, a constant velocity (CV) joint forging process is analyzed by FEM, since CV joint has a complex shape and also its required dimensional tolerances are very tight. The data acquired by FEM is compared with operational forging data obtained from an industrial production line. Based on this comparative analysis, multistage forging process for CV joints is proposed.

  • PDF

냉간단조에서 금형 열박음 영향의 정량적 분석 (Quantitative Analysis of Effect of Shrink Fit in Cold Forging)

  • 이추실;김민철;정동찬;손요헌;전만수
    • 한국정밀공학회지
    • /
    • 제28권3호
    • /
    • pp.301-307
    • /
    • 2011
  • In this paper, effects of major design parameters of cold forging dies on die mechanics are quantitatively investigated with emphasis on shrink fit using a thermoelastic finite element method. A ball-stud cold forging process found in a cold forging company is selected as a test process and the effects of die insert material, magnitude of shrink fit, dimension of shrink ring, number of shrink rings, partition of die insert and clamping force on effective stress and circumferential stress are analyzed. It has shown that the number of shrink rings, magnitude of shrink fit, and Young's modulus of die insert material have strong influence on compressive circumferential stress in die insert but that the influence of the other design parameters is relatively weak.

초소형 스크류 온간 다단 헤딩공정 연구 (Design of a Multi-Step Warm Heading Process for Subminiature Screws)

  • 장연희;정진환;장명근;홍재근;김종봉
    • 한국정밀공학회지
    • /
    • 제34권2호
    • /
    • pp.83-87
    • /
    • 2017
  • A multi-step warm forging process for subminiature screws is investigated. Due to the low formability of Titanium alloys, bit forming of Titanium screws is difficult by cold forging. In order to overcome this low formability of Titanium alloys, two candidate processes, i.e., multi-step forging and warm forging are introduced. First, a multi-step (two-step) forging process is investigated. The punch shape and stroke of forging during the first step is designed via various analyses. Finally, the bit formability is investigated at different forging temperatures. Analyses are carried out for two-step forging at various temperatures and the formability under these thermal conditions is compared.

전자식 파킹 브레이크용 세레이션 기어의 냉간다단단조 공정 설계 및 후방 압출특성에 관한 평가 (Multi-stage Cold Forging Process Design and Backward Extrusion Characteristics Evaluation of Serration Gear for Electronic Parking Brake)

  • 서주한;최종원;정의은;강명창
    • 한국기계가공학회지
    • /
    • 제21권2호
    • /
    • pp.130-136
    • /
    • 2022
  • Reducing production costs through net-shaped cold forging is an important aspect in the automobile industry. In this study, we intend to produce a net-shaped electronic parking brake (EPB) serration gear for automobiles, using multi-stage cold forging. These serrations are then assembled to the reduction gear of an EPB actuator. The forging process of the serrations and the cold forging design were verified through finite element analysis (FEA) in order to evaluate metal flow. The forging machine was selected by checking the load using FEA. Based on the FEA results, molds were designed, and parts were made using multi-stage cold forging to produce a net-shaped serration gear.