• Title/Summary/Keyword: 다단계 신경 회로망

Search Result 2, Processing Time 0.017 seconds

A License Plate Recognition Algorithm using Multi-Stage Neural Network for Automobile Black-Box Image (다단계 신경 회로망을 이용한 블랙박스 영상용 차량 번호판 인식 알고리즘)

  • Kim, Jin-young;Heo, Seo-weon;Lim, Jong-tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.1
    • /
    • pp.40-48
    • /
    • 2018
  • This paper proposes a license-plate recognition algorithm for automobile black-box image which is obtained from the camera moving with the automobile. The algorithm intends to increase the overall recognition-rate of the license-plate by increasing the Korean character recognition-rate using multi-stage neural network for automobile black-box image where there are many movements of the camera and variations of light intensity. The proposed algorithm separately recognizes the vowel and consonant of Korean characters of automobile license-plate. First, the first-stage neural network recognizes the vowels, and the recognized vowels are classified as vertical-vowels('ㅏ','ㅓ') and horizontal-vowels('ㅗ','ㅜ'). Then the consonant is classified by the second-stage neural networks for each vowel group. The simulation for automobile license-plate recognition is performed for the image obtained by a real black-box system, and the simulation results show the proposed algorithm provides the higher recognition-rate than the existing algorithms using a neural network.

An Effective Microcalcification Detection in Digitized Mammograms Using Morphological Analysis and Multi-stage Neural Network (디지털 마모그램에서 형태적 분석과 다단 신경 회로망을 이용한 효율적인 미소석회질 검출)

  • Shin, Jin-Wook;Yoon, Sook;Park, Dong-Sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.3C
    • /
    • pp.374-386
    • /
    • 2004
  • The mammogram provides the way to observe detailed internal organization of breasts to radiologists for the early detection. This paper is mainly focused on efficiently detecting the Microcalcification's Region Of Interest(ROI)s. Breast cancers can be caused from either microcalcifications or masses. Microcalcifications are appeared in a digital mammogram as tiny dots that have a little higher gray levels than their surrounding pixels. We can roughly determine the area which possibly contain microcalifications. In general, it is very challenging to find all the microcalcifications in a digital mammogram, because they are similar to some tissue parts of a breast. To efficiently detect microcalcifications ROI, we used four sequential processes; preprocessing for breast area detection, modified multilevel thresholding, ROI selection using simple thresholding filters and final ROI selection with two stages of neural networks. The filtering process with boundary conditions removes easily-distinguishable tissues while keeping all microcalcifications so that it cleans the thresholded mammogram images and speeds up the later processing by the average of 86%. The first neural network shows the average of 96.66% recognition rate. The second neural network performs better by showing the average recognition rate 98.26%. By removing all tissues while keeping microcalcifications as much as possible, the next parts of a CAD system for detecting breast cancers can become much simpler.