• 제목/요약/키워드: 다공성 전극

검색결과 158건 처리시간 0.026초

Study of the Electrolytic Reduction of Uranium Oxide in LiCl-Li$_{2}$O Molten Salts with an Integrated Cathode Assembly

  • 박성빈;서중석;강대승;권선길;박성원
    • 방사성폐기물학회지
    • /
    • 제3권2호
    • /
    • pp.105-112
    • /
    • 2005
  • 650$^{\circ}C$의 LiCl-Li$_{2}$O 용융염계에서 10 g U$_{3}$O$_{8}$/batch 규모의 장치를 이용해서 우라늄산화물의 전해환원 특성에 대한 평가를 수행하였다. 일체형 음극은 고체전극, 우라늄산화물과 우라늄산화물을 담아주는 다공성 용기(멤브레인)로 구성된다. 멤브레인 재료로는 325-mesh 스테인레스강막과 다공성 마그네시아 도가니를 사용하였다. 일체형 음극의 재질에 따른 LiCl-3 wt$\%$ Li$_{2}$O계와 U$_{3}$O$_{8}$-LiCl-3 wt$\%$ Li$_{2}$O계의 순환 전압측정법 결과로부터 전해환원 반웅 메커니즘을 규명하였다. 일체형 음극의 재질에 따른 우라늄산화물의 직접 및 간접 전해환원에 대한 실험을 수행하였다. 그 결과, 325-mesh스테인레스강막을 사용하여 직접 및 간접 전해환원으로 금속전환을 수행하였을 때 낮은 전류효율로 인해 우라늄산화물을 금속우라늄으로 환원시키지 못했으며, 마그네시아 다공성 도가니를 사용하여 간접 전해환원으로 금속전환을 수행하였을 때는 높은 전류효율로 인해 우라늄산화물을 금속우라늄으로 환원시킬 수 있었다

  • PDF

양극전착을 통한 그래핀-바나듐 산화물 복합체 제조 및 전기화학적 특성평가 (Electrochemical Properties of Graphene-vanadium Oxide Composite Prepared by Electro-deposition for Electrochemical Capacitors)

  • 정희영;정상문
    • Korean Chemical Engineering Research
    • /
    • 제53권2호
    • /
    • pp.131-136
    • /
    • 2015
  • 본 연구에서는 전극 활물질로서 그래핀-바나듐 산화물 복합체를 pH 1.8 조건에서 0.5M $VOSO_4$ 수용액을 이용하여 전기화학적 전착을 이용해 합성하였다. 전착공정 후 다공성 바나듐 산화물이 작업전극에 생성된 것을 SEM, XRD, XPS를 통해 확인하였으며 생성된 바나듐 산화물은 $V^{5+}$$V^{4+}$로 존재한다. 그래핀에 전착된 바나듐 산화물의 직경 약 100 nm의 나노로드로 이루어진 망상 구조는 전극과 전해질과의 접촉을 향상시킨다. 4000 초의 전착공정을 거친 그래핀-바나듐 산화물 복합체를 작업전극으로 하여 3전극 셀에서 전기화학적 특성을 평가한 결과 20 mV/s의 주사속도에서 $854mF/cm^2$의 높은 정전용량을 나타내었고 1000회 충방전 후 초기 용량의 53%가 유지되었다.

분리막/다공 전극형 전기분해 조합공정을 이용한 하.폐수의 고도처리 (Advanced Treatment of Sewage and Wastewater Using an Integrated Membrane Separation by Porous Electrode-typed Electrolysis)

  • 최용진;이광현
    • 멤브레인
    • /
    • 제22권2호
    • /
    • pp.95-103
    • /
    • 2012
  • 본 연구에서는 생활오수, 산업폐수, 축산폐수 등에서 발생하는 질산성화합물 및 난분해성 화합물을 효과적으로 처리하기 위해 막분리법과 다공 전극형 전기분해법을 조합한 하 폐수의 고도처리 기술을 제안하였고 제안 시스템의 효율성을 검토하였다. 제안하는 시스템은 활성슬러지 공정, 막분리 공정, 다공 전극형 전기분해공정의 3단계로 구성하였다. 본 연구에서 구성되는 막분리 공정은 부유물질을 제거해줌으로써 전기분해공정의 부하를 최소화할 수 있는 역할을 담당할 수 있게 하여 시스템을 안정하게 운전할 수 있도록 하였다. 전기분해 하이브리드 공정에 있어서는 다공성 전극으로 구성함으로써 비표면적의 확대로 인한 전극의 효율성을 높였다. 아울러 외부전압을 인가함에 따라 처리제의 공급 없이 장치에 유입된 물을 분해시킴으로써 산화 환원 반응을 유도하였다. 즉 중간체로서 수소 자유전자 라디칼과 산소원자 라디칼이 발생되어 난분해성 유기물을 산화 분해하는 역할을 담당하도록 하였다. 이는 전극 내에서 발생하는 중간체를 폐용질의 분해에 사용하기 때문에 친환경적 처리공법이었다. 실험결과들은 제안공정이 활성슬러지공법에 비하여 우수한 공정임을 보여 주었다. SS제거율은 제안공정, 막분리공정, 활성슬러지 단독공정에서 각각 약 100%, 약 100%, 약 90%였고 COD 제거효율은 제안공정 약 92%, 막분리공정 약 84%, 활성슬러지 단독공정 약 75%였으며 T-N의 제거효율은 제안공정 약 88%, 막분리공정 약 67% 활성슬러지 단독공정 약 58%였다. 이결과는 SS의 제거에 있어서 막분리 하이브리드 공정만으로도 부유물질이 충분히 제거됨을 나타내고 있었다. COD의 제거에 있어서 막분리 하이브리드 공정은 SS분의 제거를 통한 COD와 SS이외의 유기물질이 소량제거 되었음을 보였고 전기분해 하이브리드 공정에 있어서는 유기물질의 산화반응을 통한 분해로 높은 제거효율을 보였다. T-N의 제거에 있어서는 막분리 하이브리드 공정은 SS분에 포함된 부분과 소량의 유기물에 포함된 부분이 제거되고 있는 반면 전기분해 공정에 있어서는 유기물질의 산화분해반응으로 인한 높은 제거효율을 나타내고 있었다.

다공성 실리콘 산화막의 C-V 특성 (C-V Characteristics of Oxidized Porous Silicon)

  • 김석;최두진
    • 한국세라믹학회지
    • /
    • 제33권5호
    • /
    • pp.572-582
    • /
    • 1996
  • 전류밀도, 70mA/cm2와 전류인가시간, 5초, 10초 조건의 양극반응으로 다공성 실리콘을 제작하여 800~110$0^{\circ}C$에서 열산화시킨 후 AI 전극을 증착시켜 만든 MOS(Metal Oxide Semiconductor) 구조의 C-V(Capacilance-Voltage) 특성을 조사하였다. 800, 90$0^{\circ}C$의 저온과 20~30분 이내의 단시간 산화에서는 산화막의 유전상수가 보통의 열산화막보다 크게 나타나고, 산화온도가 110$0^{\circ}C$의 고온과 60분 이상의 장시간 산화의 경우에는 3.9에 근접한 값을 갖는다. 이는 다공성 실리콘 산화막내에 존재하는 산화되지 않은 silicon들에 의한 효과와 표면적 증가에 의한 정전용량의 증가 효과가 복합적으로 작용하는 것이 그 원인이라 생각된다.

  • PDF

다공성 La0.8Sr0.2CuO3 전극을 이용한 이산화탄소의 전기화학적 환원 반응 (Electrochemical Reduction of Carbon Dioxide Using Porous La0.8Sr0.2CuO3 Electrode)

  • 김정렬;이홍주;박정훈
    • Korean Chemical Engineering Research
    • /
    • 제52권2호
    • /
    • pp.247-255
    • /
    • 2014
  • 전극 촉매 물질인 페롭스카이트 형 $La_{0.8}Sr_{0.2}CuO_3$ 분말을 시트릭산 합성법으로 제조하였다. 이렇게 제조한 $La_{0.8}Sr_{0.2}CuO_3$ 분말과 지지전도체로 탄소 및 소수성 결합제로 polytetrafluoroethylene(PTFE)를 혼합하여 다공성 전극을 제조하였다. 이산화탄소를 0.1, 0.5, 1.0M KOH 전해액에 용해하여 5, $10^{\circ}C$의 반응온도에서 -1.5~-2.5 V(vs. Ag/AgCl)의 인가전위로 전기화학 실험을 수행한 결과, 액상생성물은 온도와 상관없이 메탄올, 에탄올, 2-프로판올, 1,2-부탄올이 얻어진 반면 기상생성물로는 $5^{\circ}C$에서는 메탄, 에탄, 에틸렌이 $10^{\circ}C$에서는 메탄, 에탄, 프로판이 생성되었다. 전체 패러데이 효율의 관점에서 $CO_2$ 환원의 최적 인가전압은 기상의 경우 높은 값을(-2.0, -2.2 V) 보였고, 액상의 경우는 전해액 농도와 반응온도에 상관없이 낮은 전압(-1.5 V)임을 알 수 있었다.

메조페이스 핏치로부터 균질한 다공성 탄소 제조 및 이를 이용한 직접 메탄올 연료전지의 촉매 담지체 특성 (Preparation of Uniform Porous Carbon from Mesophase Pitch and Its Characteristics of Catalyst Support for the Direct Methanol Fuel Cell)

  • 남기돈;김태진;김상경;이병록;백동현;유승곤;정두환
    • 공업화학
    • /
    • 제17권2호
    • /
    • pp.223-228
    • /
    • 2006
  • 직접 메탄올 연료전지에서 촉매 담지체로서 세공 크기별 균질한 다공성 탄소는 메조페이스 핏치와 졸-겔법으로 직접 합성한 구형 실리카를 이용하여 제조하였다. Tetrahydrofuran (THF)에 용해된 핏치와 메탄올에 분산된 구상의 실리카를 혼합하고 탄화한 후에 5 M NaOH로 실리카를 식각하여 다공성 탄소를 만들었다. 이 다공성탄소의 비표 면적은 사용된 구형 실리카의 입자 크기가 작을수록 증가하였으며, $14.7{\sim}87.7m^2/g$ 범위를 나타내었다. 평균 기공 직경 또한 사용된 실리카 입자크기에 따라 50~550 nm로 다양하게 나타났다. 다공성 탄소 담지체에 백금과 루테늄을 담지시키기 위해 액상환원법을 사용하였고, 60 wt% 백금-루테늄이 담지된 촉매의 전기 산화 활성 및 전극 성능 특성은 순환 전압 전류법과 단위전지 시험으로 평가하였다. 본 실험 범위 중 50 nm 실리카를 이용하여 제조한 백금-루테늄/다공성탄소의 경우(60 wt% Pt-Ru/porous carbon), 순환 전압 전류법 시험에서 0.4 V에서의 전류 밀도 값이 $123mA/cm^2$가 측정되었고, 단위전지 성능 시험에서는 최대 전력 밀도 값이 $60^{\circ}C$$80^{\circ}C$, 산소분위기에서 각각 105, $162mW/cm^2$를 나타내었다.

열처리 방법에 따른 카본전극 페로브스카이트 태양전지의 특성 변화 (Properties of the carbon electrode perovskite solar cells with various annealing processes)

  • 송오성;김광배
    • 한국산학기술학회논문지
    • /
    • 제22권2호
    • /
    • pp.26-32
    • /
    • 2021
  • 카본 전극 페로브스카이트 태양전지의 광활성층을 형성하는데 열판, 오븐, 쾌속열처리로 방법을 달리하며 이때 광전기적 특성과 미세구조 변화를 확인하였다. Glass/FTO/compact TiO2/meso TiO2/meso ZrO2/perovskite/carbon electrode 구조의 페로브스카이트 태양전지 소자를 열판 공정, 오븐 공정, RTA(rapid thermal annealing) 공정을 이용하여 준비하였다. 이때 광전기적 특성과 미세구조를 solar simulator와 광학현미경, 장발산주사전자현미경을 이용하여 각 소자의 특성을 분석하였다. 광전기적 특성 분석 결과, RTA 공정을 이용하여 제작한 소자에서 가장 우수한 광전기적 특성을 확인할 수 있었다. 미세구조 분석 결과 열판 공정과 오븐 공정으로 제작한 시편은 카본 전극 상부에 과잉 페로브스카이트 상이 형성되고, RTA 공정으로 제작한 시편에서는 시편 상부에 과잉 페로브스카이트 상 없이, 균일한 페로브스카이트가 형성된 것을 확인할 수 있었다. 또한 단면 미세구조에서는 RTA 공정으로 제작한 소자가 다공성 카본 전극 층에 고밀도의 페로브스카이트 층을 형성하여 우수한 광전기적 특성을 나타내었다. 따라서 대면적 소자 제작의 공정시간을 고려한 새로운 열처리방안으로 RTA 방법의 채용 가능성을 확인하였다.

리튬금속 전극을 이용한 리튬이차전지의 내부단락에 대한 분리막의 영향 (Separator Effect on the Cell Failure of Lithium Secondary Battery using Lithium Metal Electrode)

  • 김주석;배상호;황민지;허민영;도칠훈
    • 전기화학회지
    • /
    • 제14권3호
    • /
    • pp.171-175
    • /
    • 2011
  • 리튬금속을 사용하는 리튬이차전지는 사용이 간편하고 측정전극의 고유특성을 분석할 수 있는 장점이 있는 반면에 방전후 충전 시 리튬금속 전극에 리튬금속 수지상이 생성되고 심지어는 성장된 수지상에 의해 내부단락을 초래한다. 이러한 단락현상은 분리막의 두께와 밀접한 관계가 있다. 수지상에 의한 내부단락을 방지하기 위하여 두께가 각각 다른 4종류의 분리막을 사용하여 전기화학적 특성을 분석하였다. 다공성 유리섬유 부직포(glass microfiber filter) 분리막은 두께가 $300{\mu}m$ 로써 내부단락을 효과적으로 방지 할 수 있으며 AC 임피던스 값도 낮아서 유망한 분리막으로 확인하였다. 분리막의 두께가 $50{\mu}m$ 이상인 경우 내부단락 현상이 일어나지 않았으며, 0.2 C율의 싸이클 특성도 양호하였다. Signature 율 특성은 다공성 유리섬유 부직포를 사용한 경우 5 C의 고율에서 용량 유지율은 0.1 C에 비교하여 99%의 우수한 특성을 나타내는 것을 확인하였다.

전지기술의 국내외 연구동향 (The Present and the Prospects for Batteries)

  • 이주성
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 1999년도 추계학술발표회 초록집
    • /
    • pp.1-2
    • /
    • 1999
  • 시간과 공간의 구애를 받지 않는 양질의 음성, 화상, 문자정보의 교환을 위한 노력으로 디지털 휴대폰과 휴대용 컴퓨터가 등장하면서 음성과 문자정보의 교환분야에 커다란 진보를 이룩하였다. 그러나 현재는 휴대폰이 음성정보에 문자정보교환이 추가된 상황이기 때문에, 아직도 관련 정보교환기술 및 기기개발이 진행되고 있다. 앞으로 휴대폰과 휴대용 컴퓨터의 기능을 통합하고 화상정보까지 결합된 휴대용 정보기기를 위해서는 전자회로의 집적화 및 통신속도 증대가 필수적이다. 또한 이들 휴대용 정보기기를 구동시키기 위한 전력도 증가될 것으로 예측되기 때문에, 현재 전원으로 사용되는 2차전지보다 에너지 밀도가 더욱 증패된 전지가 요구될 것으로 예상된다. 그리고 내연기관의 배기에 의해 발생되는 환정오염문제를 해결하기 위한 방법중의 일환으로 전기자동차 개발이 진행되고 있으며, 이들 전기자동차에 2차전지를 장착하기 위해서 경제성이 있고, 고속충전이 가능하고, 안전성이 높은 고에너지 밀도의 2차 전지 개발이 요구되고 있다. 현재 2차전지는 음극재료나 양극재료에 따라 낚축전지, 니켈/카드륨(Ni/Cd) 전지, 니켈/수소(Ni/MH) 전지, 라륨 2 차전지등이 있으며, 전극재료의 고유특성에 의해 전위와 애너지 밀도가 결정된다. 특히 리튬 2차전지는 리튬의 낮은 산화환원전위와 분자량으로 인해 에너지 밀도가 높기 때문에 앞에서 언급한 휴대용 전자기기의 구동전원으로 많이 사용되고 있다. 리튬 2차전지는 음극 재료가 금속리튬인 경우는 리튬금속으로, 탄소재료인 경우는 리튬이온이라 하며, 한편으로 전해질이 고체 고분자이거나 혹은 역체 유기용매와 리튬염을 고분자와 혼성시킨 겔(gel)인 경우는 고분자로, 전해짙이 리튬염이 전리되어 있는 유동성 액체일 경우는 고분자를 생략하여 구분하고 있다. 즉 리튬금속 2 차전지(LB), 리튬이온 2 차전지(LIB), 리튬금속 고분자 2차전지(LPB), 리튬 이온 고분자 2차전지(LIPB)로 크게 구분된다. 금속리듐을 음극으로 사용하고 전해질로는 리튬염이 전리되어 있는 액체유기용매 를 사용한 리튬금속 2차전지는, 금속리튬전극이 충방전 과정을 반복하면서, 전리된 리튬이 균일하게 산화환원되지 못하고 표변에서 양극방향으로 성장하는 수지상 (dendrite) 현상으로 인해 안전성 확보에 문게가 있었다. 리튬과 알루미늄 합금형태로 음극에 사용한 동전형 전지는 상용화 되었지만, 이러한 단점을 개선하기 위해 리튬이온이 금속으로 석활되는 환원반응전위보다 높은 전위에서 전극재료가 충전되면서 리튬이온이 저장되고, 방전되면서 배출되는 탄소를 음극재료로, 그리고 리튬이온이 충방 전시 가역적으로 삼입 탈리되는 층상의 리튬금속산화물을 양극으로 구성하고, 엑체 전해질과 다공성 고분자 분리막을 사용한 것이 LIB이다. LIB에서 리튬이온의 이동이 가능한 액체전해질의 가능을 고분자 전해질이 대신함으로서 보다 높은 안정성을 확보 한 전지가 LIPB 이다. 또한 고분자 전해질을 사용한 경우 금속리튬상에서의 수지상 성장이 저하되는 현상이 관찰됨으로서, 이론용량이 3,860mAh/g 에 달하는 리튬금속 혹은 합금을 고분자 전지에서 음극으로 사용하고자 하는 2 차전지가 LPB 이다. 리튬 2차전지는 비록 1989년 액체전해질을 사용한 금속리튬 2차전지의 실패전력을 안고있지만 궁극적으로는 이론적으로 최대의 에너지밀도를 가지고 있는 LPB를 지 향할 것으로 예상되지만 가까운 장래에 실현되기는 어려울 것이다. 따라서 향후의 라튬 2차전지의 전개방향은 현재의 LIB를 고분자 전해질을 채용하는 LIPB로 진행시커면서 저가의 전극재료개발을 지속적으로 추진할 것으로 예상된다. 현재 리튬 2차전지는 소형전지에 국한되고 있지만 전기자동차나 전력저장용으로 이를 대형화시커기 위해서는 열적특성이 우수하고 저가인 전극재료개발이 선행되야하기 때문에, 저가의 탄소재료와 코발트산화물을 대신할 수 있는 철, 망칸 또는 니켈산 화물의 개발이 필요하다.

  • PDF

LSV법을 이용한 전기화학적 메커니즘 연구 (A Study on the Electrochemical Mechanism using Liner Sweep Voltammetry (LSV) Method)

  • 이영균;한상준;서용진;이우선
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.164-164
    • /
    • 2008
  • 금속배선공정에서 높은 전도율과 재료의 값이 싸다는 이유로 최근 Cu를 사용하였으나, 디바이스의 구조적 특성을 유지하기 위해 높은 압력으로 인한 새로운 다공성 막(low-k)의 파괴와, 디싱과 에로젼 현상으로 인한 문제점이 발생하게 되었다. 이러한 문제점을 해결하고자, 본 논문에서는 Cu 표면에 Passivation layer를 형성 및 제거하는 개념으로 공정시 연마제를 사용하지 않으며, 낮은 압력조건에서 공정을 수행하기 위해, 전해질의 농도 변화에 따른 Liner sweep voltammetry 법을 사용하여 전압활성화에 의한 전기화학적 반응이 Cu전극에 어떤 영향을 미치는지 연구하였으며, 표면 조성을 알아보기 위하여 Energy Dispersive Spectroscopy (EDS) 분석을 하였고, Cu disk의 결정성과 배향성 관찰을 위해 X-Ray diffraction (XRD)로 금속 표면을 비교하여 실험 결과로 얻어진 데이터를 통하여 ECMP 공정에 적합한 전해액 선정과 농도를 선택하였다.

  • PDF