• Title/Summary/Keyword: 다공성 스크린

Search Result 11, Processing Time 0.028 seconds

Modeling of Mesh Screen for Use in Surface Tension Tank Using Flow-3d Software (Flow-3d를 이용한 표면장력 탱크용 메시 스크린 모델링)

  • Kim, Hyuntak;Lim, Sang Hyuk;Yoon, Hosung;Park, Jeong-Bae;Kwon, Sejin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.984-990
    • /
    • 2017
  • Mesh screen modeling and liquid propellant discharge simulation of surface tension tank were performed using commercial CFD software Flow-3d. $350{\times}2600$, $400{\times}3000$ and $510{\times}3600$ DTW mesh screen were modeled using macroscopic porous media model. Porosity, capillary pressure, and drag coefficient were assigned for each mesh screen model, and bubble point simulations were performed. The mesh screen model was validated with the experimental data. Based on the screen modeling, liquid propellant discharge simulation from PMD tank was performed. NTO was assigned as the liquid propellant, and void was set to flow into the tank inlet to achieve an initial volume flow rate of liquid propellant in $3{\times}10^{-3}g$ acceleration condition. The intial flow pressure drop through the mesh screen was approximately 270 Pa, and the pressure drop increased with time. Liquid propellant discharge was sustained until the flow pressure drop reached approximately 630 Pa, which was near the estimated bubble point value of the screen model.

  • PDF

Absorptive Characteristics of a Helmholtz Resonator Damped by a Flexible Porous Screen (유연한 다공성 스크린을 가진 헬름홀쯔 공명기의 흡음특성)

  • Kim, Sang-Ryul;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.865-868
    • /
    • 2005
  • A Helmholtz resonator is one of noise control elements widely used in many practical applications. The resonator has very high absorption at resonance frequency but the frequency bandwidth is very small. Therefore many kinds of additional resistive screens have been applied to the resonator's neck in order to increase the bandwidth. This paper discusses the absorptive characteristics of a Helmholtz resonator damped by a flexible porous screen in form of wire mesh. First, various experimental results are introduced and studied. Secondly, the effect of the resistive screen is theoretically predicted. It is shown that the distance between the screen and aperture affects on the resonance frequency as well as the absorption of the system.

  • PDF

A Basic Study on Blade Coating Process of Piston Skirt by Applying the Technology of Screen Printing - Parametric Study (스크린 프린팅 기술을 적용한 피스톤 스커트의 브레이드 코팅공정에 관한 기초연구 - 매개변수 연구)

  • Chun, Sang-Myung
    • Tribology and Lubricants
    • /
    • v.25 no.6
    • /
    • pp.414-420
    • /
    • 2009
  • In this study, using the general expressions predicting the pressure under a blade and the volume of coating fluid passing through the blade edge, it is predicted the change of the coating wet film thickness related with various parameters determining the characteristics of this blade coating process. Using the results of this research, it can be found the optimized coating wet film thickness taking into account the parameters related with various coating process on various metal surfaces will be able to be predicted.

A Basic Study on Blade Coating Process of Piston Skirt by Applying the Technology of Screen Printing - Case Study (스크린 프린팅 기술을 적용한 피스톤 스커트의 브레이드 코팅공정에 관한 기초연구 - 사례연구)

  • Chun, Sang-Myung
    • Tribology and Lubricants
    • /
    • v.26 no.2
    • /
    • pp.142-148
    • /
    • 2010
  • The purpose of this study is to find how to be formed the wet film thickness during the low friction coating process for a piston skirt with application to the theory of screen printing. In other words, in this research, it is to derive the general expressions predicting the pressure under a blade and the volume of coating fluid passing through the blade edge. Using these expressions, it is to be approved that the current operation characteristics of a screen printing system to a sample blade coating process for low friction coating on a piston skirt can be quantitatively assessed.

Segmented 평관형 SOFC에서 다공성 $MgAl_2O_4$ 지지체 제조 및 특성

  • Park, Seong-Tae;Choe, Byeong-Hyeon;Lee, Dae-Jin;Kim, Bit-Nam;Ji, Mi-Jeong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.273-273
    • /
    • 2009
  • 고체산화물 연료전지 (Solid Oxide Fuel Cell, 이하 SOFC)는 제조형태에 따라 크게 평판형과 원통형으로 구분할 수 있다. 단위면적당 출력 효율이 높은 평판형의 장점과 원통형의 밀봉이 용이한 장점을 동시에 가지는 평관형 형태로 지지체를 제작하였으며, 셀의 배치를 평면상 직렬로 연결하는 다전지식으로 구성함으로 전극의 길이나, 셀 간격을 기존 평판형이나 원통형에 비해 대폭 감소시켜 단위면적당 전압 및 출력효율을 높이고자 하였다. Segmented 평관형 지지체의 소재로는 연료전지의 성능 특성에 관여하지 않으며 열사이클 저항성과 기계적 강도가 우수한 spinel구조를 가지는 $MgAl_2O_4$를 선정하였다. 연료가스의 원활한 공급이 가능하도록 carbon을 기공 전구체로 사용하여 압출성형하였으며 건조과정에서 crack이 생기지 않는 공정을 확립한 후 $1400^{\circ}C$ 에서 소결하였다. 제조된 지지체는 수은침투법과 3점 굽힘 강도법으로 기공율과 기계적 강도를 각각 측정하였다. Anode를 스크린 프린팅법으로 지지체 위에 적층한 후 미세구조를 확인하였고 이를 바탕으로 다공성이며 기계적 강도를 가지고 음극과의 반응이 없는 우수한 지지체를 제조할 수 있었다.

  • PDF

Study of Screened Supersonic Jet Flow Fields (스크린 설치에 따른 초음속 제트유동 변화에 관한 연구)

  • Lee, Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.92-98
    • /
    • 2005
  • Screen can provide any disturbed resistance that affects the change in characteristics of turbulence, velocity and pressure distributions of the flow field, and thus it has been widely used to control the flow. Some previous related studies for compressible flows have limitations such as, considering relatively low-Mach-number flows in the range of 0.3 ∼ 0.7, and not observing the detailed shock structures of the flow fields. An experimental study on highly compressible axi-symmetric supersonic jet flow fields behind wire-gauze screen has thus been carried out. Continuous/instantaneous flow images by Schlieren flow- visualization technique and the information of Pitot pressure/flow-noise measurements of the flow field behind the screen for various jet expansion conditions have been obtained. Effects of various porosity and inclination angles of the screen at the nozzle exit have also been investigated, and the experimental results have been compared to the case with no screen installed.

Porous Media Modelling and Verification of Thermal Analysis for Inlet and Outlet Ducts of Spent Fuel Storage Cask (사용후핵연료 저장용기 유로입출구의 다공성매질 모델링 및 열해석 검증평가)

  • Lee, Ju-Chan;Bang, Kyung-Sik;Choi, Woo-Seok;Seo, Ki-Seog;Ko, Sungho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.223-232
    • /
    • 2018
  • Bird screen meshes are installed at the air inlet and outlet ducts of spent fuel storage casks to inhibit the intrusion of debris from the external environment. The presence of these screens introduces an additional resistance to air flow through the ducts. In this study, a porous media model was developed to simplify the bird screen meshes. CFD analyses were used to derive and verify the flow resistance factors for the porous media model. Thermal analyses were carried out for concrete storage cask using the porous media model. Thermal tests were performed for concrete casks with bird screen meshes. The measured temperatures were compared with the analysis results for the porous model. The analysis results agreed well with the test results. The analysis temperatures were slightly higher than the test temperatures. Therefore, the reliability and conservatism of the analysis results for the porous model have been verified.

A Study about Effectiveness and Usefulness of a FEM Slug Test Model (유한 요소기법을 이용한 Slug시험 모델의 타당성 및 유용성 연구)

  • 한혜정;최종근
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.7 no.2
    • /
    • pp.89-96
    • /
    • 2000
  • Slug tests are the most widely used field method for quantification of hydraulic conductivity of porous media. Well recovery is affected by well casing, borehole radii, screened length, hydraulic conductivity, and specific storage of porous media. In this study, a new slug tests model was developed through finite element approximation and the validity and usefulness of the model were tested in various ways. Water level fluctuation in a well under slug test and cons-equent groundwater flow in the surrounding porous medium were appropriately coupled through estimation of well-flux using an iteration technique. Numerical accuracy of the model was verified using the Cooper et al. (1967) solution. The model has advantages in simulations for monitored slug tests, partial penetration, and inclusion of storage factor. Volume coverage of slug tests is significantly affected by storage factor. Magnitude and speed of propagation of head changes from a well increases as storage factor becomes low. It will be beneficial to use type curves of monitored head transients in the surrounding porous formation for estimation of specific storage. As the vertical component of groundwater flow is enhanced, the influence of storage factor on well recovery decreases. For a radial-vertical flow around a partially penetrated well, deviations between hydraulic estimates by various methods and data selection of recovery curve are negligible on practical purposes, whereas the deviations are somewhat significant for a radial flow.

  • PDF

Synthesis of Mesoporous Tin Oxide and Its Application as a Gas Sensor (메조세공을 갖는 이산화 주석의 합성 및 가스센서로서의 응용)

  • Kim, Nam-Hyon;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.18 no.2
    • /
    • pp.142-147
    • /
    • 2007
  • In this study, mesoporous tin oxide was synthesized by sol-gel method using $C_{16}TMABr$ surfactant as a template in a basic condition. The optimum conditions for the synthesis of mesoporous $SnO_2$ were investigated and the obtained samples were characterized by XRD, nitrogen adsorption and TEM analysis. A mesoporous and nanostructured $SnO_2$ gas sensor with Au electrode and Pt heater has been fabricated on alumina substrate as one unit via a screen printing process. Sensing abilities of fabricated sensors were examined for CO and $CH_4$ gases, respectively, at $350^{\circ}C$ in the concentration range of 1~10,000 ppm. Influence of loading amount of palladium impregnated on $SnO_2$ was also tested in detection of those gases. High sensitivity to detecting gases and the fast response speed with stability were obtained with the mesoporous tin oxide sensor as compared to a non-porous one under the same detection conditions.

Effect of Cathode Porosity on the Cathodic Polarization Behavior of Mixed Conducting LSCF(La0.6Sr0.4Co0.2Fe0.8O3) (혼합전도체 LSCF(La0.6Sr0.4Co0.2Fe0.8O3) 양극의 기공률에 따른 양극분극 특성)

  • Yun, Joong-Cheul;Lee, Jong-Ho;Kim, Joosun;Lee, Hae-Weon;Kim, Byong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.4
    • /
    • pp.251-259
    • /
    • 2005
  • In order to characterize the influence of the reaction-site density on the cathodic polarization property of LSCF, we chose the porosity of LSCF as a main controlling variable, which is supposed to be closely related with active sites for the cathode reaction. To control the porosity of cathodes, we changed the mixing ratio of fine and coarse LSCF powders. The porosity and pore perimeter of cathodes were quantitatively analyzed by image analysis. The electrochemical half cell test for the cathodic polarization was performed via 3-probe AC-impedance spectroscopy. According to the investigation, the reduction of oxygen at LSCF cathode was mainly controlled by following two rate determining steps; i) surface diffusion and/or ionic conduction of ionized oxygen through bulk LSCF phase, ii) charge transfer of oxygen ion at cathode/electrolyte interface. Moreover, the overall cathode polarization was diminished as the cathode porosity increased due to the increase of the active reaction sites in cathode layer.