• Title/Summary/Keyword: 다각형 계층구조

Search Result 4, Processing Time 0.017 seconds

A Triangulation and Guard Sufficiency Set of the Hierarchy of Simple Polygons (단순 다각형 계층구조에서의 삼각화와 경비가능충분집합)

  • Yang, Tae-Cheon
    • The KIPS Transactions:PartA
    • /
    • v.15A no.5
    • /
    • pp.295-300
    • /
    • 2008
  • In this paper, we consider a characterization of a Guard Sufficiency Set(GSS) in the hierarchy of simple polygons. we propose the diagonals of a arbitrary triangulation of a polygon as a GSS when guards see the diagonals with completely visibility and both sides of the diagonal. we show that this can be a GSS in convex polygons, unimodal polygons, spiral polygons but this can not be a GSS in star-shaped polygons, monotone polygons, completely external visible polygons.

A Study on The Improvement of Douglas-Peucker's Polyline Simplification Algorithm (Douglas-Peucker 단순화 알고리듬 개선에 관한 연구)

  • 황철수
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.2
    • /
    • pp.117-128
    • /
    • 1999
  • A Simple tree-structured line simplification method, which exactly follows the Douglas-Peucker algorithm, has a strength for its simplification index to be involved into the hierarchical data structures. However, the hierarchy of simplification index, which is the core in a simple tree method, may not be always guaranteed. It is validated that the local property of line features in such global approaches as Douglas-Peucker algorithm is apt to be neglected and the construction of hierarchy with no thought of locality may entangle the hierarchy. This study designed a new approach, CALS(Convex hull Applied Line Simplification), a) to search critical points of line feature with convex hull search technique, b) to construct the hierarchical data structure based on these critical points, c) to simplify the line feature using multiple trees. CALS improved the spatial accuracy as compared with a simple tree method. Especially CALS was excellent in case of line features having the great extent of sinuosity.

  • PDF

On Constructing NURBS Surface Model from Scattered and Unorganized 3-D Range Data (정렬되지 않은 3차원 거리 데이터로부터의 NURBS 곡면 모델 생성 기법)

  • Park, In-Kyu;Yun, Il-Dong;Lee, Sang-Uk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.3
    • /
    • pp.17-30
    • /
    • 2000
  • In this paper, we propose an efficient algorithm to produce 3-D surface model from a set of range data, based on NURBS (Non-Uniform Rational B-Splines) surface fitting technique. It is assumed that the range data is initially unorganized and scattered 3-D points, while their connectivity is also unknown. The proposed algorithm consists of three steps: initial model approximation, hierarchical representation, and construction of the NURBS patch network. The mitral model is approximated by polyhedral and triangular model using K-means clustering technique Then, the initial model is represented by hierarchically decomposed tree structure. Based on this, $G^1$ continuous NURBS patch network is constructed efficiently. The computational complexity as well as the modeling error is much reduced by means of hierarchical decomposition and precise approximation of the NURBS control mesh Experimental results show that the initial model as well as the NURBS patch network are constructed automatically, while the modeling error is observed to be negligible.

  • PDF

Local Shape Analysis of the Hippocampus using Hierarchical Level-of-Detail Representations (계층적 Level-of-Detail 표현을 이용한 해마의 국부적인 형상 분석)

  • Kim Jeong-Sik;Choi Soo-Mi;Choi Yoo-Ju;Kim Myoung-Hee
    • The KIPS Transactions:PartA
    • /
    • v.11A no.7 s.91
    • /
    • pp.555-562
    • /
    • 2004
  • Both global volume reduction and local shape changes of hippocampus within the brain indicate their abnormal neurological states. Hippocampal shape analysis consists of two main steps. First, construct a hippocampal shape representation model ; second, compute a shape similarity from this representation. This paper proposes a novel method for the analysis of hippocampal shape using integrated Octree-based representation, containing meshes, voxels, and skeletons. First of all, we create multi-level meshes by applying the Marching Cube algorithm to the hippocampal region segmented from MR images. This model is converted to intermediate binary voxel representation. And we extract the 3D skeleton from these voxels using the slice-based skeletonization method. Then, in order to acquire multiresolutional shape representation, we store hierarchically the meshes, voxels, skeletons comprised in nodes of the Octree, and we extract the sample meshes using the ray-tracing based mesh sampling technique. Finally, as a similarity measure between the shapes, we compute $L_2$ Norm and Hausdorff distance for each sam-pled mesh pair by shooting the rays fired from the extracted skeleton. As we use a mouse picking interface for analyzing a local shape inter-actively, we provide an interaction and multiresolution based analysis for the local shape changes. In this paper, our experiment shows that our approach is robust to the rotation and the scale, especially effective to discriminate the changes between local shapes of hippocampus and more-over to increase the speed of analysis without degrading accuracy by using a hierarchical level-of-detail approach.