• Title/Summary/Keyword: 다각근사법

Search Result 4, Processing Time 0.021 seconds

The Analysis of Electromagnetic Scattering of Perfectly Conducting Polygonal Cylinders Using Extrapolation Integral Method (외삽 근사법을 이용한 완전 도체 다각주의 전자파 산란 해석)

  • 이상회;정구철;김정기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.12 no.6
    • /
    • pp.571-579
    • /
    • 1987
  • The integral equations used in electromagnetic fields theory can be used for scattering problems. We can obtain various characteristics of scatterer. Ie, power pattern, scattered field, by finding current distribution on the scatterer. In this paper, current distribution on polygonal cylinder is obtained using integral equations in 2 dimension. For numerical aualysis, the moment method is used with pulse function as a basis function and integral equation is used with extrapolation method, which saves cpu time.

  • PDF

A Study of the B/STUD Inspection System Using the Vision System (비전을 이용한 B/STUD 검사 시스템에 관한 연구)

  • 장영훈;한창수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1120-1123
    • /
    • 1995
  • In this paper, an automatic B/STUD inspection system has been developed using the computer aided vision system. Index Table has been used to get the rapid measurement and multi-camera has been used to get the high resolution in mechanical system. Camera calibration was suggested to perform the reliable Inspection. Image processing and data analysis algorithms for B/STUD inspection system has been investigated and were performed quickly with high accuracy. As a result, Inspection system of a B/STUD can be measured with a high resolution in real time.

  • PDF

Decision of Road Direction by Polygonal Approximation. (다각근사법을 이용한 도로방향 결정)

  • Lim, Young-Cheol;Park, Jong-Gun;Kim, Eui-Sun;Park, Jin-Su;Park, Chang-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1398-1400
    • /
    • 1996
  • In this paper, a method of the decision of the road direction for ALV(Autonomous Land Vehicle) road following by region-based segmentation is presented. The decision of the road direction requires extracting road regions from images in real-time to guide the navigation of ALV on the roadway. Two thresholds to discriminate between road and non-road region in the image are easily decided, using knowledge of problem region and polygonal approximation that searches multiple peaks and valleys in histogram of a road image. The most likely road region of the binary image is selected from original image by these steps. The location of a vanishing point to indicate the direction of the road can be obtained applying it to X-Y profile of the binary road region again. It can successfully steer a ALV along a road reliably, even in the presence of fluctuation of illumination condition, bad road surface condition such as hidden boundaries, shadows, road patches, dirt and water stains, and unusual road condition. Pyramid structure also saves time in processing road images and a real-time image processing for achieving navigation of ALV is implemented. The efficacy of this approach is demonstrated using several real-world road images.

  • PDF

Dynamic Manipulability for Cooperating Multiple Robot Systems with Frictional Contacts (접촉 마찰을 고려한 다중 로봇 시스템의 조작도 해석)

  • Byun Jae-Min;Lee Ji-Hong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.5 s.311
    • /
    • pp.10-18
    • /
    • 2006
  • We propose a new approach to compute possible acceleration boundary, so is called dynamic manipulability, for multiple robotic systems with frictional contacts between robot end-effectors and object. As the frictional contact condition which requires each contact force to lie within a friction cone is based on the nonlinear inequality formalism is not easy to handle the constraint in manipulability analysis. To include the frictional contact condition into the conventional manipulability analysis we approximate the friction cone to a pyramid which is described by linear inequality constraints. And then achievable acceleration boundaries of manipulated object are calculated conventional linear programming technique under constraints for torque capability of each robot and the approximated contact condition. With the proposed method we find some solution to which conventional approaches did not reach. Also, case studies are Presented to illustrate the correctness of the proposed approach for two robot systems of simple planar robots and PUMA560 robots.