• Title/Summary/Keyword: 니켈-코발트-망간

Search Result 35, Processing Time 0.022 seconds

Occurrence and Distribution of Manganese Nodules in KODOS-89 Area, Northeast Pacific (KODOS-89 지역 망간단괴의 산상 및 분포 특성)

  • 이경용;문재운
    • 한국해양학회지
    • /
    • v.27 no.3
    • /
    • pp.210-227
    • /
    • 1992
  • KODOS-89 area, the northwestern part of Clarion-Clarion-Clipperton fracture zones in the Northeast Pacific, was surveyed in order to study the occurrence and distribution of manganese nodules. Variations in the nodule characteristics are related mainly to seafloor topography. Nodules from abyssal plain have high Mn/Fe ratio and high Mn, Cu, Ni and Zn concentrations, whereas those from seamount are characterized by low Mn/Fe ratio and high Fe and Co concentrations. These compositional characteristics are attributed to toxic diagnosis and hydrogenesis, respectively. Nodules of the early diegenetic origin tend to accurate crystalline Mn-oxides uniformly within the topmost sediment layers and maintain a regular spheroidal, ellipsoidal to discoidal shape with rough surface textures. On the other hand, those of hydrogenetic origin are characterized by polynucleation, irregualr shape, and smooth surface textures. Nodule abundance is high (avg. 13.4 kg/m$^2$) in seamount area, resulting from ample supply of nucleating materials by auto-fragmentation of older nodules. Nodule abundance in abyssal plain is relatively low (avg. 3.9 kg/m$^2$) and tends to increase southward. This phenomenon results from facilitation of taking seed materials from adjacent seamount and enhancement of the early diagenesis by sufficient supply of organic materials. Nodule abundance is considered to be controlled primarily by seeding effects and secondly by supplies of organic materials.

  • PDF

Ammoniacal Leaching for Recovery of Valuable Metals from Spent Lithium-ion Battery Materials (폐리튬이온전지로부터 유가금속을 회수하기 위한 암모니아 침출법)

  • Ku, Heesuk;Jung, Yeojin;Kang, Ga-hee;Kim, Songlee;Kim, Sookyung;Yang, Donghyo;Rhee, Kangin;Sohn, Jeongsoo;Kwon, Kyungjung
    • Resources Recycling
    • /
    • v.24 no.3
    • /
    • pp.44-50
    • /
    • 2015
  • Recycling technologies would be required in consideration of increasing demand in lithium ion batteries (LIBs). In this study, the leaching behavior of Ni, Co and Mn is investigated with ammoniacal medium for spent cathode active materials, which are separated from a commercial LIB pack in hybrid electric vehicles. The leaching behavior of each metal is analyzed in the presence of reducing agent and pH buffering agent. The existence of reducing agent is necessary to increase the leaching efficiency of Ni and Co. The leaching of Mn is insignificant even with the existence of reducing agent in contrast to Ni and Co. The most conspicuous difference between acid and ammoniacal leaching would be the selective leaching behavior between Ni/Co and Mn. The ammoniacal leaching can reduce the cost of basic reagent that makes the pH of leachate higher for the precipitation of leached metals in the acid leaching.

Effect of Cooking Methods on Elemental Composition of Pumpkin (Cucurbitaceae spp.) (호박류의 조리방법에 따른 무기질 성분의 변화)

  • Hong, Young Shin;Kim, Kyong Su
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.10
    • /
    • pp.1195-1204
    • /
    • 2017
  • This study was designed to determine the effects of three cooking methods, boiling, microwave, and steaming, on elemental compositions of green pumpkin, zucchini, and sweet and ripened pumpkin. The cooking methods were carried out at 3, 5, and 10 min. The samples were then dried, crushed, and decomposed by microwave-assisted digestion method. Macro elements were analyzed by Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES), whereas ICP-Mass Spectrometer (ICP-MS) was used for micro elements determination. From the results, macro elements were present in the order of K, P, Ca, Mg, S, Fe, Zn, and Na in all analyzed pumpkins. Among micro elements, Mn, Cu, Rb, and Ba, were present at high levels. For the effects of cooking methods, boiling significantly reduced the concentrations of elements. Cooking time affected concentrations of elements in the same manner with large differences between elemental contents in samples cooked for 5 and 10 min. Regarding micro elements contents, both effects were not significant. Similar elemental compositions with different concentration levels in all pumpkin types were observed. Green pumpkin and ripened pumpkin showed high retention rates of inorganic components upon steaming, and zucchini and sweet pumpkin showed high retention rates upon microwave cooking. Conclusively, cooking method and time affect amounts of residual inorganic ingredients in pumpkin.

High-purity Lithium Carbonate Manufacturing Technology from the Secondary Battery Recycling Waste using D2EHPA + TBP Solvent (이차전지 폐액으로부터 D2EHPA + TBP solvent를 활용한 탄산리튬 제조기술)

  • Dipak Sen;Hee-Yul Yang;Se-Chul Hong
    • Resources Recycling
    • /
    • v.32 no.1
    • /
    • pp.21-32
    • /
    • 2023
  • Because the application of lithium has gradually increased for the production of lithium ion batteries (LIBs), more research studies about recycling using solvent extraction (SX) should focus on Li+ recovery from the waste solution obtained after the removal of the valuable metals nickel, cobalt and manganese (NCM). The raffinate obtained after the removal of NCM metal contains lithium ions and other impurities such as Na ions. In this study, we optimized a selective SX system using di-(2-ethylhexyl) phosphoric acid (D2EHPA) as the extractant and tri-n-butyl phosphate (TBP) as a modifier in kerosene for the recovery of lithium from a waste solution containing lithium and a high concentration of sodium (Li+ = 0.5 ~ 1 wt%, Na+ = 3 ~6.5 wt%). The extraction of lithium was tested in different solvent compositions and the most effective extraction occurred in the solution composed of 20% D2EHPA + 20% TBP + and 60% kerosene. In this SX system with added NaOH for saponification, more than 95% lithium was selectively extracted in four extraction steps using an organic to aqueous ratio of 5:1 and an equilibrium pH of 4 ~ 4.5. Additionally, most of the Na+ (92% by weight) remained in the raffinate. The extracted lithium is stripped using 8 wt% HCl to yield pure lithium chloride with negligible Na content. The lithium chloride is subsequently treated with high purity ammonium bicarbonate to afford lithium carbonate powder. Finally the lithium carbonate is washed with an adequate amount of water to remove trace amounts of sodium resulting in highly pure lithium carbonate powder (purity > 99.2%).

Analysis of Changes in Trade Structure of the Raw Materials of Rare Metals in Korea (국내 희유금속 원재료 교역구조 변화 분석 연구)

  • Hwa Suk Lee;Yu Jeong Kim
    • Resources Recycling
    • /
    • v.32 no.6
    • /
    • pp.67-78
    • /
    • 2023
  • The rare metals used as raw materials in high-tech industries undergo changes in demand structures and supply chains following domestic industrial structural shifts and technological advancements, exhibiting high price volatility. Therefore, it is necessary to periodically analyze changes in the demand structures of rare metals. Since domestic demand for most rare metals relies on imports in Korea, the changes in domestic demand for rare metals can be identified by analyzing changes in their trade structure. In the present study, we analyze the changes in trade volume, trade growth rate, trade rankings, and trading countries from 2000 to 2022 for 35 rare metals, categorized into five types-ores, metals, alloys, compounds, and scrap. The trade of the raw materials of rare metals in Korea has generally increased since the 2000s, except for a significant decline in 2009 and 2016. The total trade volume, encompassing both exports and imports, has increased by approximately tenfold in 2022 compared to 2001. Until the mid-2010s, the trade of the raw materials of rare metals was primarily focused on those used in steel-manufacturing such as silicon, nickel, chrome, molybdenum, manganese, and others. However, after that period, there has been an increase in the trade of platinum group metals like palladium, rhodium, platinum, and the raw materials of rare metals for secondary battery-manufacturing such as lithium and cobalt. Particularly in 2022, lithium has become the largest share in trade of the raw materials of rare metals in Korea, due to the price surge and increase in demand.