• Title/Summary/Keyword: 니켈 노출

Search Result 32, Processing Time 0.017 seconds

CYCLIC FATIGUE OF THE SODIUM HYPOCHLORITE TREATED AND /OR STEAM AUTOCLAVED NICKEL-TITANIUM ENDODONTIC FILES (차아염소산나트륨 용액과 고압증기멸균이 근관치료용 니켈-타이타늄 파일의 주기적 피로 파절에 미치는 영향)

  • Cho, Hye-Young;Jung, Ii-Young;Lee, Chan-Young;Kim, Eui-Seong
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.1
    • /
    • pp.54-65
    • /
    • 2008
  • The purpose of this study was to determine the effect of sodium hypochlorite and steam autoclaving on the cyclic fatigue of nickel-titanium endodontic files. Two types of files with a .06 taper and #30 were used, $K3^{(R)}$ (SybronEndo, Glendora, California, USA) and Hero $642^{(R)}$(Micro-Mega, BesanCon, France). The files were divided into 6 experimental groups containing 10 files each group depending the soaking time in 6% sodium hypochlorite solution and number of cycles of steam autoclave. After sterilization, a cyclic fatigue test was performed on each file, and the fracture time was recorded in seconds. The control group underwent the cyclic fatigue test only. After the test, the surface characteristics of the files were observed using scanning electron microscopy (SEM). All groups containing the Hero 64~ files showed a similar cyclic fatigue fracture time. However, the cyclic fatigue fracture time with the $K3^{(R)}$ files was significantly shorter in groups which were treated with sodium hypochlorite than in the control group (P < 0.05), SEM revealed both Hero $642^{(R)}$ and $K3^{(R)}$ files to have significant corrosion on the file surface in groups treated with sodium hypochlorite, compared with the sharp and regular blades of the control group. $K3^{(R)}$ files showed more corrosion than the Hero $642^{(R)}$ files. Bluntness of the blades of the $K3^{(R)}$ file was observed in groups treated with steam autoclave. Although there was no obvious destruction on the surface of steam autoclaved Hero $642^{(R)}$ files, slight bluntness was observed. Sterilizing with a steam autoclave is much less destructive to $K3^{(R)}$ files than sodium hypochlorite. The longer time exposed to sodium hypochlorite, the more destructive pattern was shown on the blades of the files. Therefore, when using sodium hypochlorite solution, the exposure time should be as short as possible in order to prevent corrosion and increase the cyclic fatigue fracture time.

Risk Assessment of Heavy Metals Migrated from Plastic Food Utensils, Containers, and Packaging Distributed in Korea (국내 유통 식품용 플라스틱 기구 및 용기, 포장의 중금속 위해도 평가)

  • Kyung Youn, Lee;Hyung Soo, Kim;Dae Yong, Jang;Ye Ji, Koo;Seung Ha, Lee;Hye Bin, Yeo;Ji Su, Yoon;Kyung-Min, Lim;Jaeyun, Choi
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.3
    • /
    • pp.175-182
    • /
    • 2022
  • Heavy metals can be intentionally or unintentionally introduced into plastic food utensils, containers, and packaging (PFUCP) as additives or contaminants, which can be ingested with food by humans. Here, seven-heavy metals (lead, cadmium, nickel, chromium, antimony, copper, and manganese) with toxicity concerns were selected, and risk assessment was done by establishing their migration from 137 PFUCP products made of 16 materials distributed in Korea. Migration of heavy metals was examined by applying 4% acetic acid as a food simulant (70℃, 30 minutes) to the PFUCP products. Inductively coupled plasma mass spectrometry (ICP-MS) was employed for the analysis of migrated heavy metals, and the reliability of quantitative results was confirmed by checking linearity, LOD, LOQ, recovery, precision, and expanded uncertainty. As a result of monitoring, heavy metals were detected at a level of non-detection to 8.76 ± 11.87 ㎍/L and most of the heavy metals investigated were only detected at trace amounts of less than 1 ㎍/L on average. However, antimony migrated from PET products was significantly higher than other groups. Risk assessment revealed that all the heavy metals investigated were safe with a margin of exposure above 311. Collectively, we demonstrated that heavy metals migrated from PFUCP products distributed in Korea appear to be within the safe range.