• Title/Summary/Keyword: 니카드전지

Search Result 7, Processing Time 0.023 seconds

이달의 과학자 - 전북대 신소재공학부 교수 '송명엽'

  • Korean Federation of Science and Technology Societies
    • The Science & Technology
    • /
    • v.32 no.12 s.367
    • /
    • pp.14-15
    • /
    • 1999
  • 지난 20여년동안 수소저장합금에 관한 연구에 몰두해 온 전북대 신소재공학부 송명엽교수는 재충전이 가능한 2차전지 개발에 성공하여 상품화하는데 심혈을 기울이고 있다. 송교수가 개발한 2차전지는 현재 사용하고 있는 니카드 2차전지보다 전지용량이 1.5~2배에 이르는 우수한 성능을 갖고 있어 휴대용 전화기를 비롯해 노트북 컴퓨터, 켐코더 등의 새로운 전원으로 대체될 것으로 기대를 모으고 있다.

  • PDF

Recovery of nickel from the spent nickel-cadmium battery (폐 Ni-Cd 전지로부터 니켈의 회수)

  • 박제신;박경호;전호석;손정수;김병규
    • Resources Recycling
    • /
    • v.8 no.5
    • /
    • pp.28-33
    • /
    • 1999
  • Trus paper presenls a hydrometallurgical process Tor recovcnng ~uckcals mckcl sulfate fiom the spent nickel-cadrnlum bauery in whch c:,dmi~lm war re~novcdb y vapowing m e h d in vacuum. F ~ s ts,e lcct~vcc rushing and classification mell~odw ere performed to separate iron physically and the nickel-rich sample (over 80% nickel) was obtained. Ths sarnple was dissolved in sulf~ uiuica cid to obtain a luckcl sulfatc soluho~d~o se to its seluradon painl. TIE Cree acid in the unpurificd nickcl solut~onw as neutl-dized and iron war ve~novedk om the solulmn Thc mckel sulhte solution was c~yst~llizeadt around 45'C to obtain ruckel sulfate henahyril-ate.

  • PDF

Recent Trend of Lithium Secondary Batteries for Cellular Phones (최근 휴대폰용 배터리의 기술개발 동향)

  • Lee, H.G.;Kim, Y.J.;Cho, W.I.
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.1
    • /
    • pp.31-35
    • /
    • 2007
  • In this review article, we are going to explain the recent development of lithium secondary batteries for a cellular phone. There are three kinds of rechargeable batteries for cellular phones such as nickel-cadmium, nickel-metal hydride, and lithium ion or lithium ion polymer. The lithium secondary battery is one of the most excellent battery in the point of view of energy density. It means very small and light one among same capacity batteries is the lithium secondary battery. The market volume of lithium secondary batteries increases steeply about 15% annually. The trend of R&D is focused on novel cathode materials including $LiFePO_4$, novel anode materials such as lithium titanate, silicon, and tin, elecrolytes, and safety insurance.

A Study on the Separation of Cadmium from Waste Ni-Cd Secondary Batteries by Ion Substitution Reaction (이온치환 반응을 이용한 니켈-카드뮴 폐이차전지에서 카드뮴의 분리에 대한 연구)

  • Kim, Dae-Weon;Park, Il-Jeong;Ahn, Nak-Kyoon;Jeong, Hang-Chul;Jung, Soo-Hoon;Choi, Joong-Yup;Yang, Dae-Hoon
    • Resources Recycling
    • /
    • v.27 no.4
    • /
    • pp.36-43
    • /
    • 2018
  • In order to recycle waste nickel-cadmium batteries, cadmium was selectively removed by ion substitution reaction so that cadmium and nickel could be separated efficiently. The electrode powder obtained by crushing the electrode in the waste nickelcadmium battery was leached with sulfuric acid. The cadmium in the nickel-cadmium solution was precipitated with cadmium sulfide by the addition of sodium sulfide. Ion substitution experiments were carried out under various conditions. At the optimum condition with pH = -0.1 and $Na_2S/Cd=2.3$ at room temperature, the residual Cd in the solution was about 100 ppm, and most of it was precipitated with CdS.

A Study on Pretreatment and Acid Leaching for Wet Recycling of Waste Industrial Ni-Cd Secondary Battery (산업용 니켈-카드뮴 폐 이차전지 습식 재활용을 위한 전처리 및 산 침출에 대한 연구)

  • Jung, Soo-Hoon;Kim, Dae-Weon;Park, Il-Jeong;Choi, Joong-Yup;Yang, Dae-Hoon;Choi, Hee-Lack
    • Resources Recycling
    • /
    • v.26 no.5
    • /
    • pp.67-76
    • /
    • 2017
  • In order to efficiently recycle waste industrial nickel-cadmium batteries, anodic and cathodic materials were crushed by a cut mill and classified by sieves. We used wet magnetic separation method for eliminating iron components from the crushed powders. In addition, the acid leaching test for the obtained anode and cathode powders was carried out under various conditions by means of the wet process. At the optimum leaching conditions with 2.0 M $H_2SO_4$ at $90^{\circ}C$, 15 wt $H_2O_2$ and L/S=20 for 3 hours, the leaching efficiency of nickel and cadmium was 99%, respectively.

A Study on the Cementation Reaction of Cadmium by Zinc Powders from Leaching Solution of Waste Nickel-Cadmium Batteries (폐니켈-카드뮴 전지 침출액으로부터 아연 분말을 이용한 카드뮴의 치환반응에 대한 연구)

  • Kim, Min-Jun;Park, Il-Jeong;Kim, Dae-Weon;Jung, Hang-Chul
    • Resources Recycling
    • /
    • v.28 no.1
    • /
    • pp.23-31
    • /
    • 2019
  • Cementation is one of economical and efficient recycling method precipitating the metal ion in solution by adding another active metal. In this study for optimizing cadmium recovery efficiency, it was performed as a function of the effect of pH, temperature, particle size, and input amount of zinc in 0.1 M $CdSO_4$ solution and Ni-Cd battery leaching solutions, respectively. The particle size of zinc and temperature were key factors for Cd cementation and it was confirmed that the input amount of 2.6 of Zn/Cd ratio using granular-type zinc was optimal condition for selective Cd recovery efficiency at $25^{\circ}C$.

A study on the Synthesis of Nickel Hydroxide by Ammonium Sulfate from Waste Nickel-Cadmium Batteries (폐니켈-카드뮴 전지로부터 황산암모늄을 이용한 수산화니켈 제조 방안 연구)

  • Kim, Min-Jun;Park, Il-Jeong;Kim, Dae-Weon;Jeong, Hang-Chul
    • Resources Recycling
    • /
    • v.28 no.5
    • /
    • pp.51-59
    • /
    • 2019
  • This study focused on the synthesis of the nickel hydroxide using ammonium sulfate in leaching solution from waste nickel-cadmium batteries. The effect of pH, temperature and the input amount of ammonium sulfate in leaching solution was investigated. The ammonium nickel sulfate with high purity was obtained in acidic leaching solution and the solution temperature of $60^{\circ}C$. The suitable molar ratio of the input amount of ammonium sulfate to nickel in solution is 2:1. The impurity about 1.4 at.% of Cd was included in the nickel hydroxide precipitates when ammonium nickel sulfate was used. At the process using sodium sulfide which precipitates the cadmium in solution, nickel and iron compounds were precipitated together.