• Title/Summary/Keyword: 능동 반향음 제어

Search Result 5, Processing Time 0.018 seconds

A single sensor based active reflection control system using FxLMS algorithm (FxLMS를 이용한 단일 센서기반 능동 반향음 제어 시스템)

  • Kim, Jaepil;Ji, Youna;Park, Young cheol;Seo, Young soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.1
    • /
    • pp.57-63
    • /
    • 2017
  • This paper presents an active acoustic-reflection control algorithm based on a single sensor. The proposed algorithm operates in a system comprising a single sensor located nearby the reflective surface and a control transducer mounted on the reflective surface. First, the incident and reflected acoustic signals are separated from the sensor signal, and a control signal is generated using the separated signals. For the signal separation, the proposed algorithm requires the response of the reflection path which is estimated from the acoustic response between an external sound source and the sensor. Finally, the control filter is adjusted using the FxLMS (Filtered-x Least Mean Square) algorithm. To verify the effectiveness of the proposed algorithm, it was implemented in real time using a DSP (Digital Signal Processing) board, and the experimental results obtained in one-dimensional air-acoustic environment show that the reflections of the 1 kHz burst can be reduced by 11.6 dB.

A design of optimal filter for single sensor based acoustic reflection control (단일 센서 기반 반향음 제어를 위한 최적 필터 설계)

  • Jeon, Shin-Hyuk;Ji, Youna;Park, Young-cheol;Seo, Young-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.5
    • /
    • pp.353-360
    • /
    • 2017
  • The single sensor based acoustic reflection control system separates the incident and reflected signals from the single sensor output, and reduces the reflected signal by generating an out-of-phase signal from the incident signal component. In this paper, we propose an optimal filter design method for a single sensor based reflection control system. In the proposed method, it is shown that the optimum control filter design is possible by using the measured impulse responses of the reflection and control paths. The reflection control algorithm based on the proposed optimal filter achieves better performance than the conventional adaptive filter-based algorithm and effectively controls the reflection without the initial convergence time. We performed computer simulations using the signals obtained in a 1-dimensional acoustic duct environment, and from the simulation results, it was confirmed that the proposed optimal filter has robust performance even in noisy environment.

Development and Test of a Tile Projector for Control of Low-frequency Underwater Echoes (저주파 수중 반향음 제어를 위한 타일형 프로젝터의 개발 및 성능시험)

  • Woo, Sangbeom;Lee, Jae-Wan;Ohm, Won-Suk;Kim, Wan-Gu;Kang, Hwi-Suk;Yoon, Suk Wang;Seo, Youngsoo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.630-634
    • /
    • 2014
  • In this paper, a tile projector was developed for the control of low-frequency underwater echoes. The projector was designed to cover a wide area such as the hull of a submarine, and to have a relatively thin thickness. As a preliminary work for active echo control, the performance of the projector was measured in an anechoic water tank. The transmitting voltage response as well as the passive echo reduction were measured to evaluate the performance as an underwater projector.

  • PDF

Finite Element Analysis of a Tile Projector for Control of Low-frequency Underwater Echoes (저주파 수중 반향음 제어를 위한 타일형 프로젝터의 유한요소 해석)

  • Lee, Jae-Wan;Woo, Sangbeom;Ohm, Won-Suk;Seo, Youngsoo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.625-629
    • /
    • 2014
  • In this paper, a tile projector for the active control of low-frequency underwater echoes is studied using finite element method. Compared to the existing underwater actuators used for echo reduction, the tile projector is better suited for covering a wide area such as the hull of a submarine. In order to actively match the acoustic impedance at the water-object interface, the projector is driven to radiate a pressure wave that is the inverted replica of the echo at the interface. Finite element simulations demonstrate significant echo reductions due to the active impedance matching by the tile projector.

  • PDF

Acoustic radiation characteristics of a tile projector with performance variations among unit transducers (단위 트랜스듀서 간 성능편차를 갖는 타일형 프로젝터의 음향방사 특성)

  • Chun, Wonjong;Noh, Eunghwy;Ohm, Won-Suk;Seo, Youngsoo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.6
    • /
    • pp.436-444
    • /
    • 2016
  • Uniformity in transducer performance is a must-have to ensure the reliable acoustic performance of a tile projector, used for active echo reduction. However, practical limitations imposed by variations in material properties and fabrication errors lead to performance variations among unit transducers, which could degrade the radiation characteristics (transmitting voltage response and directivity) of the tile projector and ultimately the echo reduction performance. In this paper we present a method to minimize these adverse effects via an appropriate placement of unit transducers within the tile projector. To this end, we perform a series of coupled acoustic-piezoelectric simulations, assuming a group of 36 unit transducers having 6 dB variations in transmitting voltage response, to analyze and compare the radiation characteristics of tile projectors under different transducer placement schemes.