• Title/Summary/Keyword: 능동 롤러 가이드

Search Result 4, Processing Time 0.017 seconds

Dynamic Modeling and Controller Design for Active Control of High-speed Elevator Front-back Vibrations (고속 엘리베이터의 전후 진동제어를 위한 동적 모델링 및 능동 제어기 설계)

  • Baek, Kwang-Hyun;Kim, Ki-Young;Kwak, Moon-K.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.1
    • /
    • pp.74-80
    • /
    • 2011
  • Front-back vibrations of high-speed elevator need to be suppressed as in the case of lateral vibrations. The dynamic model for the front-back vibrations is different from the lateral vibration model since the supporting structure varies. In this study, a dynamic model was derived using the energy method. Based on the free vibration analysis, it was observed that the fundamental frequency for the front-back vibration is slightly lower than the fundamental frequency of the lateral vibration, which means that the active vibration control should be carried out in both directions. The PPF control algorithm was applied to the numerical model under measured rail irregularities. The numerical results show that the active vibration control of elevator front-back vibration is also possible.

Active Control Experiments on High-speed Elevator Vibrations (고속 엘리베이터 능동진동제어 실험)

  • Kim, Ki-Young;Kwak, Moon-K.;Baek, Kwang-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.4
    • /
    • pp.325-332
    • /
    • 2011
  • This paper is concerned with the active control experiments on elevator vibrations by means of the active roller guide. To this end, a roller guide was designed using a voice-coil actuator and linear guide. A simple proportional control algorithm combined with the band-pass filter was implemented using the DSP. Based on the initial experiments, a new control system which can handle lateral and front-back vibrations of elevator was built and tested using the elevator test tower. The experimental results show that the elevator vibrations are reduced by the active control technique.

Dynamic Modeling and Active Controller Design for Elevator Lateral Vibrations (엘리베이터 횡진동 동적 모델링 및 능동진동제어기 설계)

  • Kwak, Moon-K.;Kim, Ki-Young;Baek, Kwang-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.2
    • /
    • pp.154-161
    • /
    • 2011
  • This paper is concerned with the modeling and active controller design for elevator lateral vibrations. To this end, a dynamic model for the lateral vibration of the elevator consisting of a supporting frame, cage and active roller guides was derived using the energy method. Free vibration analysis was then carried out based on the equations of motion. Active vibration controller was designed based on the PID control algorithm and applied to the numerical model. Rail irregularity were considered as external disturbance in the numerical simulations. The numerical results show that the active vibration control of elevator is possible.

Dynamic Modeling and Controller Design for Active Vibration Control of Elevator (엘리베이터 능동진동제어를 위한 동적 모델링 및 제어기 설계)

  • Kim, Ki-Young;Kwak, Moon-K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.71-76
    • /
    • 2008
  • This paper is concerned with the active vibration control of elevator by means of the active roller guide. To this end, a dynamic model for the horizontal vibration of the elevator consisting of a supporting frame, cage and active roller guides was derived using the energy method. Free vibration analysis was then carried out based on the equations of motion. Active vibration controller was designed based on the equations of motion using the LQR theory and applied to the numerical model. Rail irregularity and wind pressure variation were considered as external disturbance in the numerical simulations. The numerical results show that the active vibration control of elevator is possible.

  • PDF