• Title/Summary/Keyword: 능동헤드레스트

Search Result 3, Processing Time 0.018 seconds

Automotive Occupant Protection Technologies (차량용 탑승자 보호 기술)

  • Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.223-226
    • /
    • 2018
  • Recently, various safety technologies have been extensively developed to protect occupants from accidents. This paper surveys various automotive occupant protection technologies such as antilock braking system, traction control system, electronic brake distribution, electronic stability control, autonomous emergency braking, airbag, seatbelt pretensioner, and active headrest. Their operation principles and implementations are also explained.

A Study on Development of an Active Headrest for the Passenger when Rear-end Collision (후방충돌시 승객보호를 위한 능동형 헤드레스트 개발에 관한 연구)

  • Kim, D.W.;Kim, N.G.;Ko, Y.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.327-330
    • /
    • 1996
  • We investigated the possibility of preventing a passenger's whiplash injury by rear-end collision. We sought to prevent the whiplash injury by appling an active headrest system to a passenger A main factor in whiplash injury is the backward, rapid, passive, and negative acceleration of the head. Our results showed that the active headrest system does reduce the backward, rapid, passive, and negative acceleration of the head. As a conclusion, Our active headrest system is a useful equipment to prevent whiplash injury.

  • PDF

Active Sound Control Approach Using Virtual Microphones for Formation of Quiet Zones at a Chair (좌석의 정음공간 형성을 위한 가상마이크로폰 기반 능동음향제어 기법 연구)

  • Ryu, Seokhoon;Kim, Jeakwan;Lee, Young-Sup
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.9
    • /
    • pp.628-636
    • /
    • 2015
  • In this study, theoretical and experimental analyses were performed for creating and moving the zone of quiet(ZoQ) to the ear location of a sitter by using active sound control technique. As the ZoQ is actively created at the location of the error microphone basically with an active sound control system using an algorithm such as the filtered-x least mean square(FxLMS), the virtual microphone control(VMC) method was considered to move the location of the ZoQ to around the sitter`s ear. A chair system with microphones and loudspeakers on both sides was manufactured for the experiment and thus an active headrest against the swept narrowband noise as the primary noise was implemented with a real-time controller in which the VMC algorithm was embedded. After the control experiment with and without the VMC method, the location variation of the ZoQ by analyzing the error signals measured by the error and the virtual microphones. Therefore, it is observed that the FxLMS with the VMC technique can provide the re-location of the ZoQ from the error microphone location to the virtual microphone location. Also it is found that the amount of the attenuation difference between the two locations was small.