• Title/Summary/Keyword: 늑골선 형상

Search Result 3, Processing Time 0.016 seconds

A Note on the Hull Form Variational Methods (선형변환 방법에 대한 소고)

  • 이춘주;윤현세;유재문
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.1
    • /
    • pp.63-68
    • /
    • 2003
  • Systematic geometrical variation method of hull forms, such as "1 -Cp", "Swinging" and "Lackenby" are widely used in the early stage of a new design from those of a similar parent ship, which shows a better performance through the model test and/or sea trials. This method is simple and easy to modify original hull forms without changing the main characteristics. The shape of the prismatic curie can be easily varied by these methods, however, the frame line shape in the body plan can′t be generated easily, when the section shapes are complicated or have discontinuities or the mismatch of the body plan and the stem and stern profiles. To overcome this drawback of the hull form variations, a simple and useful method has been proposed in the present study.

Hull Form Development of an AFRAMAX Tanker with a Composite Stern Frameline Concept (복합선미선형 개념에 의한 AFRAMAX형 유조선 선형의 개발)

  • Ho-Chung Kim;Chun-Ju Lee;Su-Hyung Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.1-11
    • /
    • 1991
  • A hull form for an Aframax tanker whore form parameters cover the values of $C_B{\simeq}0.8,\;L/B{\simeq}5.5\;and\;B/d{\simeq}3.5$ has been developed by applying a composite stern frameline concept and its excellent performance has been evaluated through a series of model tests at the Korea Research Institute of Ships and Ocean Engineering. The tests showed that this concept was very much promising in the cases of wide breadth and shallow draught vessels and suitably applicable to the stern frameline shape. For the comparison, a hull form developed by Japanese 'H' yard has been selected and the performances of two hull forms were evaluated by model tests and theoretical calculations. The comparison shows that Daewoo hull form requires less effective power by 10% and less delevered power by 5-6% at both full load and ballast conditions. In addition, it is suggested that Hushes method can give better correlationthan Froude method because the full scale resistance extrapolated by Froude method would be very much optimistic in case of the hull form with very low value of form factor.

  • PDF

Study on Hull Form Variation of Fore Body Based on Multiple Parametric Modification Curves (다중 파라메트릭 변환곡선 기반 선수 선형 변환기법 연구)

  • Park, Sung-Woo;Kim, Seung-Hyeon;Lee, Inwon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.2
    • /
    • pp.96-108
    • /
    • 2022
  • In this paper, we propose a systematic hull form variation technique which automatically satisfies the displacement constraint and guarantees a high level of fairness. This method is possible through multiple parameter correction curves. The present method is to improve the hull form variation method based on parametric modification function and consists of two sub-categories: SAC variation and section lines modification. For SAC variation, the utilization of two B-Spline curves satisfying GC1 condition led to the satisfaction of displacement constraint and high level of fairness at the same time. Section lines modification methods involves in using two fuctions: the first is the waterplane modification function combining two cubic splines. the other function is the sectional area modification function consisting of 2nd order polynomial over the DLWL(Design Load Waterline) and 3rd order polynomial below the DLWL, This function enables not only the fundamental U-V section shape variation but also systematically modified section lines. The present method is expected to be more useful in the hull form optimization process using CFD compared to the existing method.