• Title/Summary/Keyword: 뉴로-퍼지기법

Search Result 69, Processing Time 0.031 seconds

Establishment and Application of Neuro-Fuzzy Real-Time Flood Forecasting Model by Linking Takagi-Sugeno Inference with Neural Network (I) : Selection of Optimal Input Data Combinations (Takagi-Sugeno 추론기법과 신경망을 연계한 뉴로-퍼지 홍수예측 모형의 구축 및 적용 (I) : 최적 입력자료 조합의 선정)

  • Choi, Seung-Yong;Kim, Byung-Hyun;Han, Kun-Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.7
    • /
    • pp.523-536
    • /
    • 2011
  • The objective of this study is to develop the data driven model for the flood forecasting that are improved the problems of the existing hydrological model for flood forecasting in medium and small streams. Neuro-Fuzzy flood forecasting model which linked the Takagi-Sugeno fuzzy inference theory with neural network, that can forecast flood only by using the rainfall and flood level and discharge data without using lots of physical data that are necessary in existing hydrological rainfall-runoff model is established. The accuracy of flood forecasting using this model is determined by temporal distribution and number of used rainfall and water level as input data. So first of all, the various combinations of input data were constructed by using rainfall and water level to select optimal input data combination for applying Neuro-Fuzzy flood forecasting model. The forecasting results of each combination are compared and optimal input data combination for real-time flood forecasting is determined.

A Study on the Design of Fuzzy Controller for a Turbojet Engine Model and its Performance Enhancement through Satisfactory Multiple Objectives (터보제트엔진의 퍼지제어기 설계 및 다목적함수 만족기법을 통한 제어성능 향상에 관한 연구)

  • Han,Dong-Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.6
    • /
    • pp.61-71
    • /
    • 2003
  • In the study of control technique for a turbojet engine model, the Takagi-Sugeno fuzzy logic controller has been designed based on the model identification by the well designed PI controlled system through T-S neuro-fuzzy inference system. To enhance this designed controller, those procedures are proposed that certainty factors are adopted to each rule of objective groups which are classified by the fuzzy C-Means algorithm and the satisfaction degrees are matched to meet the objectives. This proposed technique shows its feasibility by upgrading performances of the previously well-designed T-S fuzzy controller.

Neuro-Fuzzy Approach for Prediction of Ozone Concentration (뉴로-퍼지기법에 의한 오존 농도예측)

  • 김성신;김재용;이종범;김민영
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.11a
    • /
    • pp.170-172
    • /
    • 2000
  • 산업의 발전과 기상 변화에 따른 대기중의 오존 농도 메커니즘은 질소산화물 및 탄화 수소류 등의 오염 물질로 인한 광화학적인 작용과 일사량, 풍속, 기온 등의 기상학적인 변수들의 상호작용으로 생성되어 최근 국내외를 막론하고 하계 중 6월부터 8월 사이에 집중적인 고농도 현상을 보이는 것에 관심을 가지고 있다. (중략)

  • PDF

The intelligent warning method for the water pollution accident (수질오염사고를 위한 지능형 경보 기법)

  • Yeon, In-Sung;Lee, Jae-Kyung;Lee, Jae-Kwan;Ahn, Sang-Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1043-1047
    • /
    • 2007
  • 수질오염사고로 발생할 수 있는 시나리오를 통해서 스스로 수질오염사고를 판단할 수 있는 지능형 알고리즘들을 검토하였다. 지능형 알고리즘의 학습을 위해 개발된 기준축과 학습지표는 적절한 결과를 유도하는데 유용하였다. 다층신경망, 뉴로-퍼지 알고리즘은 TOC와 DO의 이상 수질에 대하여 안정, 주의, 경고 상태를 적합하게 구별하는 것으로 나타났으며, 다중퍼셉트론 알고리즘은 모호한 자료에 대해서는 판단능력이 부족한 것으로 나타났다. 구조가 단순하지만 양방향 연산을 수행하는 BAM(Bidirectional Associative Memory) 알고리즘은 다층신경망과 뉴로-퍼지 알고리즘과 비교할 때, 학습 및 구동시간이 짧을 뿐만아니라 결과 또한 안정적인 것으로 나타났다.

  • PDF

Anomaly Intrusion Detection using Fuzzy Membership Function and Neural Networks (퍼지 멤버쉽 함수와 신경망을 이용한 이상 침입 탐지)

  • Cha, Byung-Rae
    • The KIPS Transactions:PartC
    • /
    • v.11C no.5
    • /
    • pp.595-604
    • /
    • 2004
  • By the help of expansion of computer network and rapid growth of Internet, the information infrastructure is now able to provide a wide range of services. Especially open architecture - the inherent nature of Internet - has not only got in the way of offering QoS service, managing networks, but also made the users vulnerable to both the threat of backing and the issue of information leak. Thus, people recognized the importance of both taking active, prompt and real-time action against intrusion threat, and at the same time, analyzing the similar patterns of in-trusion already known. There are now many researches underway on Intrusion Detection System(IDS). The paper carries research on the in-trusion detection system which hired supervised learning algorithm and Fuzzy membership function especially with Neuro-Fuzzy model in order to improve its performance. It modifies tansigmoid transfer function of Neural Networks into fuzzy membership function, so that it can reduce the uncertainty of anomaly intrusion detection. Finally, the fuzzy logic suggested here has been applied to a network-based anomaly intrusion detection system, tested against intrusion data offered by DARPA 2000 Intrusion Data Sets, and proven that it overcomes the shortcomings that Anomaly Intrusion Detection usually has.

Applying the ANFIS to the Analysis of Rain and Dark Effects on the Saturation Headways at Signalized Intersections (강우 및 밝기에 따른 신호교차로 포화차두시간 분석에의 적응 뉴로-퍼지 적용)

  • Kim, Kyung Whan;Chung, Jae Whan;Kim, Daehyon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4D
    • /
    • pp.573-580
    • /
    • 2006
  • The Saturation headway is a major parameter in estimating the intersection capacity and setting the signal timing. But Existing algorithms are still far from being robust in dealing with factors related to the variation of saturation headways at signalized intersections. So this study apply the fuzzy inference system using ANFIS. The ANFIS provides a method for the fuzzy modeling procedure to learn information about a data set, in order to compute the membership function parameters that best allow the associated fuzzy inference system to track the given input/output data. The climate conditions and the degree of brightness were chosen as the input variables when the rate of heavy vehicles is 10-25 %. These factors have the uncertain nature in quantification, which is the reason why these are chosen as the fuzzy variables. A neuro-fuzzy inference model to estimate saturation headways at signalized intersections was constructed in this study. Evaluating the model using the statistics of $R^2$, MAE and MSE, it was shown that the explainability of the model was very high, the values of the statistics being 0.993, 0.0289, 0.0173 respectively.

Host Anomaly Detection of Neural Networks and Neural-fuzzy Techniques with Soundex Algorithm (사운덱스 알고리즘을 적용한 신경망라 뉴로-처지 기법의 호스트 이상 탐지)

  • Cha, Byung-Rae;Kim, Hyung-Jong;Park, Bong-Gu;Cho, Hyug-Hyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.2
    • /
    • pp.13-22
    • /
    • 2005
  • To improve the anomaly IDS using system calls, this study focuses on Neural Networks Learning using the Soundex algorithm which is designed to change feature selection and variable length data into a fixed length learning pattern. That is, by changing variable length sequential system call data into a fixed length behavior pattern using the Soundex algorithm, this study conducted neural networks learning by using a backpropagation algorithm with fuzzy membership function. The back-propagation neural networks and Neuro-Fuzzy technique are applied for anomaly intrusion detection of system calls using Sendmail Data of UNM to demonstrate its aspect of he complexity of time, space and MDL performance.

Enhancement Alogorithm of Portal Image using Neuo-Fuzzy (뉴로 퍼지를 이용한 포탈 영상의 개선 알고리듬의 연구)

  • 허수진;신동익
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.5
    • /
    • pp.527-535
    • /
    • 2000
  • For a reliable patient set-up verification, better portal films are needed to track relevant features. Simulator films are compared with portal films as a reference image in radiotherapy planning. This shows some possibilities of the use of image information of simulator images for enhancement and restorations of portal images which are very poor in quality compared with the simulator images. This paper present an approach that combine an associative memory, a kind of artificial neural networks with fuzzy image enhancement technique using genetic algorithm which determines the fuzzy region of membership function by the use of maximum entropy principles. A higher portal image quality than conventional technique is achieved.

  • PDF

Forecasting High-Level Ozone Concentration with Fuzzy Clustering (퍼지 클러스터링 이용한 고농도오존예측)

  • 김재용;김성신;왕보현
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.336-339
    • /
    • 2001
  • The ozone forecasting systems have many problems because the mechanism of the ozone concentration is highly complex, nonlinear, and nonstationary. Especially, the performance of the prediction results in the high-level ozone concentration are not good. This paper describes the modeling method of the ozone prediction system using neuro-fuzzy approaches and fuzzy clustering methods. The dynamic polynomial neural network (DPNN) based upon a typical algorithm of GMDH (group method of data handling) is a useful method for data analysis, the identification of nonlinear complex systems, and prediction of dynamical systems.

  • PDF

Neuro-Fuzzy Diagnostic Technique for Performance Evaluation of a Chiller (뉴로 퍼지를 이용한 냉동기 성능 진단 기법)

  • Shin, Young-Gy;Chang, Young-Soo;Kim, Young-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.5
    • /
    • pp.553-560
    • /
    • 2003
  • On-site diagnosis of chiller performance is an essential step fur energy saving business. The main purpose of the on-site diagnosis is to predict the COP of a target chiller. Many models based on thermodynamics background have been proposed for this purpose. However, they have to be modified from chiller to chiller and require deep insight into thermodynamics that most of field engineers are often lacking in. This study focuses on developing an easy-to-use diagnostic technique that is based on adaptive neuro-fuzzy inference system (ANFIS). Quality of the training data for ANFIS, sampled over June through September, is assessed by checking COP prediction errors. The architecture of the ANFIS, its error bounds, and collection of training data are described in detail.