• Title/Summary/Keyword: 뉴로퍼지 모델

Search Result 78, Processing Time 0.034 seconds

A Neuro-Fuzzy System Modeling using Gaussian Mixture Model and Clustering Method (GMM과 클러스터링 기법에 의한 뉴로-퍼지 시스템 모델링)

  • Kim, Sung-Suk;Kwak, Keun-Chang;Ryu, Jeong-Woong;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.6
    • /
    • pp.571-576
    • /
    • 2002
  • There have been a lot of considerations dealing with improving the performance of neuro-fuzzy system. The studies on the neuro-fuzzy modeling have largely been devoted to two approaches. First is to improve performance index of system. The other is to reduce the structure size. In spite of its satisfactory result, it should be noted that these are difficult to extend to high dimensional input or to increase the membership functions. We propose a novel neuro-fuzzy system based on the efficient clustering method for initializing the parameters of the premise part. It is a very useful method that maintains a few number of rules and improves the performance. It combine the various algorithms to improve the performance. The Expectation-Maximization algorithm of Gaussian mixture model is an efficient estimation method for unknown parameter estimation of mirture model. The obtained parameters are used for fuzzy clustering method. The proposed method satisfies these two requirements using the Gaussian mixture model and neuro-fuzzy modeling. Experimental results indicate that the proposed method is capable of giving reliable performance.

Optimized Design of Intelligent White LED Dimming System Based on Illumination-Adaptive Algorithm (조도 적응 알고리즘 기반 지능형 White LED Dimming System의 최적화 설계)

  • Lim, Sung-Joon;Jung, Dae-Hyung;Kim, Hyun-Ki;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1956-1957
    • /
    • 2011
  • 본 연구는 White LED를 이용하여 주변 밝기 변화에 빠르게 적응하는 퍼지 뉴로 Dimming Control System을 설계한다. 본 논문에서는 방사형기저함수 신경회로망(Radial Basis Function Neural Network: RBFNN)을 설계하여 실제 White LED Dimming Control System에 적용시켜 모델의 근사화 및 일반화 성능을 평가한다. 제안한 모델에서의 은닉층은 방사형기저함수를 사용하여 적합도를 구현하였고, 후반부의 연결가중치는 경사하강법을 사용한다. 이때 멤버쉽 함수의 중심점은 HCM 클러스터링 (Hard C-Means Clustering)을 적용하여 결정한다. 연결가중치는 4가지 형태의 다항식을 대입하여 출력을 평가하였다. 최종 출력의 최적화를 위하여 PSO(Particle Swarm Optimization)을 이용하여 은닉층 노드수 및 다항식 형태를 결정한다. 본 논문에서 제안한 LED Dimming Control System은 Atmega8535를 사용하여 PWM 제어 방식을 사용하고, 조도계(Cds)를 이용하여 LED의 밝기에 따른 주변의 밝기를 감지하여 조명에 적응시키는 방법을 적용하였다.

  • PDF

Effective Drought Prediction Based on Machine Learning (머신러닝 기반 효과적인 가뭄예측)

  • Kim, Kyosik;Yoo, Jae Hwan;Kim, Byunghyun;Han, Kun-Yeun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.326-326
    • /
    • 2021
  • 장기간에 걸쳐 넓은 지역에 대해 발생하는 가뭄을 예측하기위해 많은 학자들의 기술적, 학술적 시도가 있어왔다. 본 연구에서는 복잡한 시계열을 가진 가뭄을 전망하는 방법 중 시나리오에 기반을 둔 가뭄전망 방법과 실시간으로 가뭄을 예측하는 비시나리오 기반의 방법 등을 이용하여 미래 가뭄전망을 실시했다. 시나리오에 기반을 둔 가뭄전망 방법으로는, 3개월 GCM(General Circulation Model) 예측 결과를 바탕으로 2009년도 PDSI(Palmer Drought Severity Index) 가뭄지수를 산정하여 가뭄심도에 대한 단기예측을 실시하였다. 또, 통계학적 방법과 물리적 모델(Physical model)에 기반을 둔 확정론적 수치해석 방법을 이용하여 비시나리오 기반 가뭄을 예측했다. 기존 가뭄을 통계학적 방법으로 예측하기 위해서 시도된 대표적인 방법으로 ARIMA(Autoregressive Integrated Moving Average) 모델의 예측에 대한 한계를 극복하기위해 서포트 벡터 회귀(support vector regression, SVR)와 웨이블릿(wavelet neural network) 신경망을 이용해 SPI를 측정하였다. 최적모델구조는 RMSE(root mean square error), MAE(mean absolute error) 및 R(correlation Coefficient)를 통해 선정하였고, 1-6개월의 선행예보 시간을 갖고 가뭄을 전망하였다. 그리고 SPI를 이용하여, 마코프 연쇄(Markov chain) 및 대수선형모델(log-linear model)을 적용하여 SPI기반 가뭄예측의 정확도를 검증하였으며, 터키의 아나톨리아(Anatolia) 지역을 대상으로 뉴로퍼지모델(Neuro-Fuzzy)을 적용하여 1964-2006년 기간의 월평균 강수량과 SPI를 바탕으로 가뭄을 예측하였다. 가뭄 빈도와 패턴이 불규칙적으로 변하며 지역별 강수량의 양극화가 심화됨에 따라 가뭄예측의 정확도를 높여야 하는 요구가 커지고 있다. 본 연구에서는 복잡하고 비선형성으로 이루어진 가뭄 패턴을 기상학적 가뭄의 정도를 나타내는 표준강수증발지수(SPEI, Standardized Precipitation Evapotranspiration Index)인 월SPEI와 일SPEI를 기계학습모델에 적용하여 예측개선 모형을 개발하고자 한다.

  • PDF

A Study on the Design of Fault-Diagnosis System for Healing Mill Bearing in Wavelet Transform (웨이브렛 변환을 이용한 압연기 베어링 고장-진단 시스템 설계에 관한 연구)

  • 배영철;김이곤;최남섭;김경민;정양희
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.5
    • /
    • pp.951-961
    • /
    • 2000
  • A diagnosis system that provides early warnings regarding machine malfunction is very important for rolling mill so as to avoid great losses resulting from unexpected shutdown of the production line. But it is very difficult to provide early warnings in rolling mill. Because dynamics of rolling mill is non-linear. This Paper proposes a new method for diagnosis of rolling mill using wavelet transform(W) to solve this problem. Proposed method that measures the vibration signals of rolling mill on-line and analyze it using wavelet to acquire pattern data. And we design a fault-diagnosis system that diagnose a rolling mill using this data. Validity of the new method is asserted by real numerical data experiment.

  • PDF

A design of neuro-fuzzy adaptive controller using a reference model following function (기준 모델 추종 기능을 이용한 뉴로-퍼지 적응 제어기 설계)

  • Lee, Young-Seog;Ryoo, Dong-Wan;Seo, Bo-Hyeok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.2
    • /
    • pp.203-208
    • /
    • 1998
  • This paper presents an adaptive fuzzy controller using an neural network and adaptation algorithm. Reference-model following neuro-fuzzy controller(RMFNFC) is invesgated in order to overcome the difficulty of rule selecting and defects of the membership function in the general fuzzy logic controller(FLC). RMFNFC is developed to tune various parameter of the fuzzy controller which is used for the discrete nonlinear system control. RMFNFC is trained with the identification information and control closed loop error. A closed loop error is used for design criteria of a fuzzy controller which characterizes and quantize the control performance required in the overall control system. A control system is trained up the controller with the variation of the system obtained from the identifier and closed loop error. Numerical examples are presented to control of the discrete nonlinear system. Simulation results show the effectiveness of the proposed controller.

  • PDF

Battery State-of-Charge Estimation Using ANN and ANFIS for Photovoltaic System

  • Cho, Tae-Hyun;Hwang, Hye-Rin;Lee, Jong-Hyun;Lee, In-Soo
    • The Journal of Korean Institute of Information Technology
    • /
    • v.18 no.5
    • /
    • pp.55-64
    • /
    • 2020
  • Estimating the state of charge (SOC) of a battery is essential for increasing the stability and reliability of a photovoltaic system. In this study, battery SOC estimation methods were proposed using artificial neural networks (ANNs) with gradient descent (GD), Levenberg-Marquardt (LM), and scaled conjugate gradient (SCG), and an adaptive neuro-fuzzy inference system (ANFIS). The charge start voltage and the integrated charge current were used as input data and the SOC was used as output data. Four models (ANN-GD, ANN-LM, ANN-SCG, and ANFIS) were implemented for battery SOC estimation and compared using MATLAB. The experimental results revealed that battery SOC estimation using the ANFIS model had both the highest accuracy and highest convergence speed.

New Soil Classification System Using Cone Penetration Test (콘관입시험결과를 이용한 새로운 흙분류 방법의 개발)

  • Kim, Chan-Hong;Im, Jong-Chul;Kim, Young-Sang;Joo, No-Ah
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.10
    • /
    • pp.57-70
    • /
    • 2008
  • The advantage of piezocone penetration test is a guarantee of continuous data, which is a source of reliable interpretation of target soil layer. Many researches have been carried out f3r several decades and several classification charts have been developed to classify in-situ soil from the cone penetration test result. Since most present classification charts or methods were developed based on the data which were compiled over the world except Korea, they should be verified to be feasible for Korean soil. Furthermore, sometimes their charts provide different soil classification results according to the different input parameters. However, unfortunately, revision of those charts is quite difficult or almost impossible. In this research a new soil classification model is proposed by using fuzzy C-mean clustering and neuro-fuzzy theory based on the 5371 CPT results and soil logging results compiled from 17 local sites around Korea. Proposed neuro-fuzzy soil classification model was verified by comparing the classification results f3r new data, which were not used during learning process of neuro-fuzzy model, with real soil log. Efficiency of proposed neuro-fuzzy model was compared with other soft computing classification models and Robertson method for new data.

Evaluation of Body Movement during Sleep with a Thermopile, Wavelets and Neuro-fuzzy Reasoning

  • Yoon, Young-Ro;Shin, Jae-Woo;Lee, Hyun-Sook;Jose C.Principe
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.5-10
    • /
    • 2004
  • Body movement is one of the important factors in sleep analysis. In this study, a thermopile detector with four channels was implemented as a non-contacting detector of body movement in sleep. Using a thermopile mathematical model and several frames of thermal images, the possibility of detecting body movement was evaluated. Instant body movement signals were evaluated for the upper, lower, and entire body using the Haar wavelet. This decomposition shows the points in time when the upper-body or lower-body movement occurred and the level of body movement. Additionally, partial body movement was decomposed in head-only, whole body, and leg-only movement using the ANFIS algorithm. Finally, three subject's data were evaluated for 60 minutes, and the detection rates of instant and partial body movement, on average, were 96.3% and 89.2%, respectively.