• 제목/요약/키워드: 뉴로퍼지 모델

검색결과 78건 처리시간 0.031초

뉴로-퍼지 알고리즘을 이용한 슬러지 농도 추정 기법 개발 (Development of Sludge Concentration Estimation Method using Neuro-Fuzzy Algorithm)

  • 장상복;이호현;이대종;권진희;전명근
    • 한국지능시스템학회논문지
    • /
    • 제25권2호
    • /
    • pp.119-125
    • /
    • 2015
  • 정수장, 하수처리장, 폐수처리장의 배출수 처리공정에서 고 농도의 슬러지 선별, 이송 및 약품 투입량 조절을 위한 기준으로 슬러지 농도계가 사용되고 있다. 그러나 슬러지에 함유된 이물질이 혼입될 경우 감쇄량이 증가하거나 초음파가 수신부에 전달되지 않아 실제 농도값 보다 높은 값을 출력하거나 헌팅현상이 발생한다. 또한 단일 센서에 슬러지 포착 또는 고장 등의 문제로 배출수 공정 자동화에 어려움이 많았다. 이러한 문제점을 개선하기 위해 초음파 다중빔 농도계를 개발하여 사용하고 있으나 특정 초음파 빔의 농도 측정값에 오류가 발생할 경우 전체 농도시스템의 성능이 떨어지는 단점이 있다. 따라서 본 논문에서는 초음파 다중빔 농도계 간의 신뢰성을 판단하고, 신뢰성이 높은 다중빔 농도계만을 사용하여 슬러지 농도 예측값의 성능 향상방안을 제시하였다. 예측 알고리즘으로는 뉴로-퍼지모델을 적용하였으며 다양한 실험을 통하여 제안된 방법의 타당성을 검증하였다.

Neuro-Fuzzy와 유전자알고리즘을 이용한 수위 예측에 관한 연구 (Study on Water Stage Prediction using Neuro-Fuzzy with Genetic Algorithm)

  • 여운기;서영민;지홍기
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.382-382
    • /
    • 2011
  • 최근의 극심한 기상이변으로 인하여 발생되는 유출량의 예측에 관한 사항은 치수 이수는 물론 방재의 측면에서도 역시 매우 중요한 관심사로 부각되고 있다. 강우-유출 관계는 유역의 수많은 시 공간적 변수들에 의해 영향을 받기 때문에 매우 복잡하여 예측하기 힘든 요소이며, 과거에는 추계학적 예측모형이나 확정론적 예측모형 혹은 경험적 모형 등을 사용하여 유출량을 예측하였으나 최근에는 인공신경망과 퍼지모형 그리고 유전자 알고리즘과 같은 인공지능기반의 모형들이 많이 사용되고 있다. 하지만 유출량을 예측하고자 할 때 학습자료 및 검정자료로써 사용되는 유출량은 수위-유량 관계곡선식으로부터 구하는 경우가 대부분으로 이는 이렇게 유도된 유출량의 경우 오차가 크기 때문에 그 신뢰성에 문제가 있을 것으로 판단된다. 따라서 본 논문에서는 수위를 직접 예측함으로써 이러한 오차의 문제점을 극복 하고자 한다. Neuro-Fuzzy 모형은 과거자료의 입 출력 패턴에서 정보를 추출하여 지식으로 보유하고, 이를 근거로 새로운 상황에 대한 해답을 제시하도록 하는 인공지능분야의 학습기법으로 인간이 과거의 경험과 훈련으로 지식을 축적하듯이 시스템의 입 출력에 의하여 소속함수를 최적화함으로서 모형의 구조를 스스로 조직화한다. 따라서 수학적 알고리즘의 적용이 어려운 강우와 유출관계를 하천유역이라는 시스템에서 발생된 신호체계의 입 출력패턴으로 간주하고 인간의 사고과정을 근거로 추론과정을 거쳐 수문계의 예측에 적용할 수 있을 것이다. 유전자 알고리즘은 적자생존의 생물학 원리에 바탕을 둔 최적화 기법중의 하나로 자연계의 생명체 중 환경에 잘 적응한 개체가 좀 더 많은 자손을 남길 수 있다는 자연선택 과정과 유전자의 변화를 통해서 좋은 방향으로 발전해 나간다는 자연 진화의 과정인 자연계의 유전자 메커니즘에 바탕을 둔 탐색 알고리즘이다. 즉, 자연계의 유전과 진화 메커니즘을 공학적으로 모델화함으로써 잠재적인 해의 후보들을 모아 군집을 형성한 뒤 서로간의 교배 혹은 변이를 통해서 최적 해를 찾는 계산 모델이다. 이러한 유전자 알고리즘은 전역 샘플링을 중심으로 한 수법으로 해 공간상에서 유전자의 개수만큼 복수의 탐색점을 설정할 뿐만 아니라 교배와 돌연변이 등으로 좁아지는 탐색점 바깥의 영역으로 탐색을 확장할 수 있기 때문에 지역해에 빠질 위험성이 크게 줄어든다. 따라서 예측과 패턴인식에 강한 뉴로퍼지 모형의 해 탐색방법을 유전자 알고리즘을 사용한다면 보다 정확한 해를 찾는 것이 가능할 것으로 판단된다. 따라서 본 논문에서는 선행우량 및 상류의 수위자료로부터 하류의 단시간 수위예측에 관해 연구하였으며, 이를 위해 유전자 알고리즘을 이용항여 소속함수를 최적화 시키는 형태의 Neuro-Fuzzy모형에 대하여 연구하였다.

  • PDF

ANFIS 접근방식에 의한 미래 트랜드 충격 분석 (Future Trend Impact Analysis Based on Adaptive Neuro-Fuzzy Inference System)

  • 김용길;문경일;최세일
    • 한국전자통신학회논문지
    • /
    • 제10권4호
    • /
    • pp.499-505
    • /
    • 2015
  • TIA(: Trend Impact Analysis)는 발생될 가능성이 있는 미래의 예기치 못한 사건들을 식별하고 분석하기 위한 고급 예측 도구에 속한다. 적응적인 뉴로-퍼지 추론 시스템은 인공신경망의 일종으로 신경망과 퍼지 로직 원리를 모두 통합하고 보편적 추정되는 것으로 간주한다. 본 논문에서는 적응적인 뉴로-퍼지 추론 시스템을 사용하여 예기치 못한 사건에 관한 심각성의 정도를 추론하고 이를 시간의 함수로서 도입하여 예기치 못한 사건들의 출현 확률에 관해 보다 타당한 추정치를 얻는데 있다. 이러한 접근방식에 대한 배후 개념은 예기치 못한 사건이 갑자기 출현되는 것이 아니라 관련 사건이 가지고 있는 속성 값에 대한 건드림 혹은 변화가 기존 속성 값의 한계를 벗어나 마치 새로운 사건인 것처럼 등장할 수 있음을 전제로 하고 있다. ANFIS 접근 방식은 이러한 사건을 식별해서 예기치 못한 사건의 심각성의 정도를 추론하는데 매우 적절한 방식이라 할 수 있다. 속성들의 변화 값들은 확률적인 동적 모델 및 Monte-Carlo 방법을 사용하여 얻을 수 있다. 제안된 모델에 관한 타당성은 강 유역의 예상치 못한 가뭄에 따른 충격 추세 곡선을 기존 연구 결과와의 비교를 통해 나타낸다.

벨형 퍼지 소속함수를 적용한 ANFIS 기반 퍼지 웨이브렛 신경망 시스템의 연구 (A Study on Fuzzy Wavelet Neural Network System Based on ANFIS Applying Bell Type Fuzzy Membership Function)

  • 변오성;조수형;문성용
    • 대한전자공학회논문지TE
    • /
    • 제39권4호
    • /
    • pp.363-369
    • /
    • 2002
  • 본 논문은 적응성 뉴로-퍼지 인터페이스 시스템(Adaptive Neuro-Fuzzy Inference System : ANFIS)과 웨이브렛 변환 다중해상도 분해(multi-resolution Analysis : MRA)을 기반으로 한 웨이브렛 신경망을 가지고 임의의 비선형 함수 학습 근사화를 개선하는 것이다. ANFIS 구조는 벨형 퍼지 소속 함수로 구성이 되었으며, 웨이브렛 신경망은 전파 알고리즘과 역전파 신경망 알고리즘으로 구성되었다. 이 웨이브렛 구성은 단일 크기이고, ANFIS 기반 웨이브렛 신경망의 학습을 위해 역전파 알고리즘을 사용하였다. 1차원과 2차원 함수에서 웨이브렛 전달 파라미터 학습과 ANFIS의 벨형 소속 함수를 이용한 ANFIS 모델 기반 웨이브렛 신경망의 웨이브렛 기저 수 감소와 수렴 속도 성능이 기존의 알고리즘 보다 개선되었음을 확인하였다.

유전자알고리즘을 이용한 스마트 면진시스템의 퍼지제어 (Fuzzy Control of Smart Base Isolation System using Genetic Algorithm)

  • 김현수
    • 한국지진공학회논문집
    • /
    • 제9권2호통권42호
    • /
    • pp.37-46
    • /
    • 2005
  • 현재까지 많은 스마트 면진시스템이 제안되었고 연구되어 왔다. 본 연구에서는 스마트 면진시스템의 면진장치와 보조감쇠 장치로서 새로운 형태의 마찰진자시스템(FPS)과 MR 감쇠기를 각각 사용한다. 퍼지로직제어기(FLC)가 고유의 견실성과 비선형 및 불확실성을 쉽게 다룰 수 있는 능력이 있기 때문에 MR 감쇠기의 감쇠력을 조절하는데 FLC를 사용한다. 또한 FLC의 성능을 최적화 하기 위해서는 유전자알고리즘(GA)을 사용한다. GA를 사용함으로써 소속함수의 형상을 조절하는 것뿐만 아니라 적절한 퍼지제어규칙을 결정할 수 있다. 이를 위하여 본 연구에서는 부분개선 유전자알고리즘을 사용하였다. 이 방법은 유전자의 특정부분을 향상시키는데 효율적이다. FPS와 MR 감쇠기의 동적거동을 표현하기 위해서는 뉴로?퍼지 모델을 사용한다. FLC의 최적설계를 위하여 본 연구에서 제안된 방법의 효율성은 여러 가지 역사지진을 사용하여 계산된 동적응답을 기초로 하여 평가한다. 예제해석결과 제안된 방법은 적절한 퍼지규칙을 찾을 수 있고 GA로 최적화된 FLC는 수동제어기 뿐만 아니라 전문가의 지식에 기반한 FLC와 전통적인 준능동제어기보다 더 좋은 성능을 발휘한다.

자기회귀모델과 뉴로-퍼지모델로 구성된 하이브리드형태의 일별 최대 전력 수요예측 알고리즘 개발 (Development of Daily Peak Power Demand Forecasting Algorithm with Hybrid Type composed of AR and Neuro-Fuzzy Model)

  • 박용산;지평식
    • 전기학회논문지P
    • /
    • 제63권3호
    • /
    • pp.189-194
    • /
    • 2014
  • Due to the increasing of power consumption, it is difficult to construct accurate prediction model for daily peak power demand. It is very important work to know power demand in next day for manager and control power system. In this research, we develop a daily peak power demand prediction method based on hybrid type composed of AR and Neuro-Fuzzy model. Using data sets between 2006 and 2010 in Korea, the proposed method has been intensively tested. As the prediction results, we confirm that the proposed method makes it possible to effective estimate daily peak power demand than conventional methods.

전자파를 이용한 전동기 절연열화 진단시스템의 설계(1) (Design of System Diagnosis Insulation Degradation of Motor by using Electromagnetic Wave(1))

  • 김이곤;유권종
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2531-2534
    • /
    • 2000
  • 본 연구는 전동기의 부분방전에 의해 발생되는 전자파를 측정하여 전동기의 열화상태를 진단할 수 있는 전동기 절연열화진단시스템을 설계하는 방법을 제안하고자 한다. 따라서 부분방전에 의한 전자파를 측정하는 시스템을 구성하고, 측정된 데이터를 분석하여 정량화된 특징 데이터를 추출하고 생성된 데이터를 이용한 뉴로-퍼지 진단모델설계 방법을 제시한다. 그리고 제안된 방법에 의해 설계된 진단모델을 실측데이터를 통해 진단하여 그 타당성을 입증하고자 한다. 1단계 연구로, 본 연구에서는 현장 전동기의 전자파를 On-Line으로 계측하는 시스템을 구성하여 전동기의 절연체내에서 발생하는 부분방전에 의한 전자파를 계측하여 데이터로부터 전동기의 절연열화상태를 해석하여 절연 열화와의 관계를 분석하였다.

  • PDF

화살 탄착점 측정을 위한 레이저 스캔 카메라 파라미터 보정 (Parameter Calibration of Laser Scan Camera for Measuring the Impact Point of Arrow)

  • 백경동;천성표;이인성;김성신
    • 한국생산제조학회지
    • /
    • 제21권1호
    • /
    • pp.76-84
    • /
    • 2012
  • This paper presents the measurement system of arrow's point of impact using laser scan camera and describes the image calibration method. The calibration process of distorted image is primarily divided into explicit and implicit method. Explicit method focuses on direct optical property using physical camera and its parameter adjustment functionality, while implicit method relies on a calibration plate which assumed relations between image pixels and target positions. To find the relations of image and target position in implicit method, we proposed the performance criteria based polynomial theorem model that overcome some limitations of conventional image calibration model such as over-fitting problem. The proposed method can be verified with 2D position of arrow that were taken by SICK Ranger-D50 laser scan camera.

뉴로-퍼지 추론시스템을 이용한 입체 영상 카메라의 왜곡 영상 보정 (A Compensation for Distortion of Stereo-scopic Camera Image Using Neuro-Fuzzy Inference System)

  • 서한석;임화영
    • 한국전자통신학회논문지
    • /
    • 제5권3호
    • /
    • pp.262-268
    • /
    • 2010
  • 본 논문은 카메라의 고정 초점방식 렌즈를 통해 얻은 영상의 왜곡을 보상하여 왜곡된 이미지 좌표에서 본래의 좌표를 갖는 원영상으로 복원하는 연구이다. 이미지 센서의 다양한 영상 기기 발달과 활용으로 다방면의 산업분야에 확대 이용되고 있으나, 카메라의 소형화와 경량화 필요로 인해 렌즈의 굴곡에 의한 수신 영상의 왜곡이 영향을 미치는 경향이 많다. 특히, 입체 영상 카메라 응용 기기인 경우 좌, 우측 렌즈의 서로 다른 왜곡으로 입체감 저하 및 좌우 이미지 왜곡 등이 수반된다. 좌, 우측 카메라 수신 영상의 각 부분별로 본래의 좌표로 환산하는 근사식을 세우고 이들을 종합하는 방식으로 접근했다. 적응 뉴로-퍼지 추론시스템을 구성하여 소속 함수를 통해 분할하고 1차 Sugeno fuzzy 모델식으로 추정하여 좌, 우측 본래의 영상에 근접한 결과를 얻었다. 이로서 저가이며 소형 렌즈를 활용한 영상으로도 정확한 입체 영상 센싱 기능과 판별을 기대할 수 있게 된다.

적응형 뉴로-퍼지 기법을 이용한 수문자료 결측치 추정에 관한 연구 (A Study on the Estimation of Missing Hydrological Data Using Adaptive Network-based Fuzzy Inference System(ANFIS))

  • 신희재;이태희
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.264-264
    • /
    • 2020
  • 최근 기후변화로 우리나라는 과거에 비해 태풍이나 국지성 집중호우 및 가뭄 등 극심한 수문현상이 빈번하게 발생하고 그 피해가 더욱 커지고 있는 추세이다. 특히 우리나라의 경우 산지가 많으며 대부분의 하천이 유역면적이 작고 유로연장이 짧아 단시간에 유출이 발생하며 수문학적 특성이 연중 큰 편차를 보이고 있다. 이러한 이상기후에 따른 수문현상 파악 및 피해 경감을 위해 신뢰성 있는 수문자료는 매우 중요하다. 따라서 수문자료에 대한 품질관리는 필수적이지만 자료 결측 및 오측에 대한 신뢰성 높은 품질관리가 이뤄지지 못하고 있는 실정이다. 현재 수위자료의 결측이 발생한 경우 해당 관측소의 수위 자료를 사용해 선형보간 및 운형자법으로 수정하거나 상·하류 관측소의 관계를 이용하여 회귀분석을 통해 자료 결측의 수정 및 보완을 수행하는 등 담당자의 주관적 판단에 의존하고 있다. 본 논문에서는 신뢰성 높은 수문자료의 결측치 보완 및 예측을 위한 방안을 제시하고자 상류의 관측소의 수문자료를 이용한 하류의 단시간 수문 자료예측에 관한 연구를 수행하였다. 이를 위해 자료지향형 모델인 적응형 뉴로-퍼지 기법(Adaptive Network-based Fuzzy Inference System, ANFIS)을 이용한 모형을 적용하였다. 기존의 연구에서 가장 일반적으로 사용되는 물리적 모형은 수문자료를 활용하여 수위 및 유출을 산정함에 있어 매개변수의 결정이 어렵고 많은 오차들을 내포하고 있다. 본 연구에서 사용한 ANFIS는 입력자료와 출력자료만을 고려하여 구축할 수 있기 때문에 자료 수집단계에서 유역의 물리적 자료 및 지형 자료와 같은 방대한 양의 자료 수집이 필요가 없다. 이후 모형이 구축이 된다면 입·출력 자료만을 이용하여 신뢰성 높은 결과를 획득할 수 있지만 입력 자료의 품질에 따라 결과가 좌우되기 때문에 자료의 구성이 매우 중요하다. 본 연구에서는 ANFIS를 통해 무주남대천 유역의 무주군(여의교) 관측소의 수위자료를 입력자료를 사용하여 하류에 위치한 무주군(취수장) 관측소의 수문자료의 결측 보완 및 예측하는 모형을 구축하고 모형의 구조 변화를 통해 가장 정확도 높은 모형을 결정하였다.

  • PDF