• Title/Summary/Keyword: 뉴로퍼지시스템

Search Result 208, Processing Time 0.023 seconds

Adaptive Noise Canceling by Neuro-Fuzzy Controller (뉴로-퍼지 제어기를 이용한 능동 소음제거)

  • Park, Hee-Kyoung;Kong, Seong-Gon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.471-473
    • /
    • 1998
  • 본 논문에서는 뉴로-퍼지 제어기를 이용한 능동 소음제어기를 구현하였다. 능동 소음제어기는 잡음에 의하여 왜곡된 신호로부터 잡음을 제거하여 원 신호를 복원하는 제어시스템이다. 일반적으로 잡음의 특성이 시간에 따라 변화하고, 전달특성이 비선형적이므로 고정된 제어기에 의해서는 제어할 수 없다. 이 논문에서는 뉴로-퍼지 제어기를 사용하였고, 파라미터를 오차 역전과 학습을 통하여 변화시킴으로써 잡음의 특성에 효과적으로 적응하는 능동 소음제어기를 구성하였다. 시뮬레이션을 통하여 여러 종류의 신호에 대해서 랜덤 노이즈를 발생시키고 구성된 제어기의 성능을 확인하였다.

  • PDF

Sensorless MPPT Control of a Grid-Connected Wind Power System Using a Neuro-Fuzzy Controller (뉴로-퍼지 제어기를 이용한 계통연계형 풍력발전 시스템의 센서리스 MPPT 제어)

  • Lee, Hyun-Hee;Choi, Dae-Keun;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.484-493
    • /
    • 2011
  • The MPPT algorithm using neuro-fuzzy controller is proposed to improve the performance of fuzzy controller in this paper. The width of membership function and fuzzy rule have an effect on the performance of fuzzy controller. The neuro-fuzzy controller has the response characteristic which is superior to the existing fuzzy controller, because of using the optimal width of the fuzzy membership function through the neural learning. The superior control characteristic of a proposed algorithm is confirmed through simulation and experiment results.

Development of Classification System for Material Temperature Responses Using Neuro-Fuzzy Inference (뉴로퍼지추론을 이용한 재질온도응답 분류시스템의 개발)

  • Ryoo, Young-Jae
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.440-447
    • /
    • 2000
  • This paper describes a practical system to classify material temperature responses by composition of curve fitting and neuro-fuzzy inference. There are problems with a classification system which utilizes temperature responses. It requires too much time to approach the steady state of temperature response and it has to be filtered to remove the noise which occurs in experiments. Thus, this paper proposes a practical method using curve fitting only for transient state to remove the above problems of time and noise. Using the neuro-fuzzy system, the thermal conductivity of the material can be inferred on various ambient temperatures. So the material can be classified via its inferred thermal conductivity. To realize the system, we designed a contact sensor which has a similar structure with human finger, implemented a hardware system, and developed a classification software of curve fitting and neuro-fuzzy algorithm.

  • PDF

Precipitation forecasting by fuzzy Theory : I - Applications of Neuro-fuzzy System and Markov Chain (퍼지론에 의한 강수예측 : I. 뉴로-퍼지 시스템과 마코프 연쇄의 적용)

  • Na, Chang-Jin;Kim, Hung-Soo;Kim, Joong-Hoon;Kang, In-Joo
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.5
    • /
    • pp.619-629
    • /
    • 2002
  • Water in the atmosphere is circulated by reciprocal action of various factors in the climate system. Otherwise, any climate phenomenon could not occur of itself. Thus, we have tried to understand the climate change by analysis of the factors. In this study, the fuzzy theory which is useful to express inaccurate and approximate nature in the real world is used for forecasting precipitation influenced by the factors. Forecasting models used in this study are neuro-fuzzy system and a Markov chain and those are applied to precipitation forecasting of illinois. Various atmosphere circulation factors(like soil moisture and temperature) influencing the climate change are considered to forecast precipitation. As a forecasting result, it can be found that the considerations of the factors are helpful to increase the forecastibility of the models and the neuro-fuzzy system gives us relatively more accurate forecasts.

An Optimal Design of Neuro-Fuzzy Logic Controller Using Lamarckian Co-adaptation (라마키안 상호 적응에 의한 뉴로-퍼지 제어기의 최적 설계)

  • 이한별;김대진
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.384-389
    • /
    • 1998
  • 본 논문은 특정 응용에 적합한 퍼지 제어기의 최적 설계 파라메터(퍼지 규칙과 소속 함수)를 찾는데 역전파 학습 과정과 유전 알고리즘을 결합한 Lamarckian 상호적응 기법을 이용한 뉴로-퍼지 제어기의 새로운 설계 방법을 제안한다. 설계 파라메타들은 진화에 의한 전역적 탐색을 통해 높은 포함값과 유용한 퍼지 규칙들을 갖는 규칙 베이스와 작은 근사화 오차와 좋은 제어 성능을 갖는 소속 함수들을 얻도록 제어기간 파라메타 조절을 수행하며, 학습에 의한 국부적 탐색을 통해 각 퍼지 제어기가 원하는 제어 결과를 나타내도록 제어기내 파라메타 조절을 수행한다. 제안한 상호적응 설계 방법은 유전 알고리즘의 모든 세대에서 역전파 학습이 이루어지므로 보다 좋은 근사화 능력을 나타나고, 사용한 무게 중심 비퍼지화기가 정확한 비퍼지화값을 계산하므로 보다 좋은 제어 성능을 가지며, 퍼지 규칙 베이스와 소속 함수들의 최적화 탐색 과정이 입출력 공간의 같은 퍼지 분할 상에서 통합된 적응 함수에 의하여 동시에 수행되므로 탐색을 위한 작업 공간이 아주 작아지는 장점이 있다. 시뮬레이션 결과는 Lamarckian 상호 적응에 의해 얻어진 FLC가 퍼지 규\ulcorner 수, 근사화 능력, 제어 성능등 모든면에서 다른 방법에 의해 얻어진 FLC보다 가장 우수함을 보여준다.

  • PDF

Optimization of the Parameter of Neuro-Fuzzy system using Particle Swarm Optimization (PSO를 이용한 뉴로-퍼지 시스템의 파라미터 최적화)

  • Kim Seung-Seok;Kim Yong-Tae;Kim Ju-Sik;Jeon Byeong-Seok
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.168-171
    • /
    • 2006
  • 본 논문에서는 Particle Swarm Optimization 기법을 이용한 뉴로-퍼지 시스템의 파라미터 동정을 실시한다. PSO의 학습 및 군집 특성을 이용하여 시스템을 학습한다. 유전 알고리즘과 같은 무작위 탐색법을 이용하며 하나의 해 군집에 대해 다수 객체들이 탐색하는 기법을 통하여 최적해 부분의 탐색성능을 높여 전체 모델의 학습성능을 개선하고자 한다. 제안된 기법의 유용성을 시뮬레이션을 통하여 보이고자 한다.

  • PDF

Implementation of Neuro-Fuzzy Controller for Noise Cancelling in a Cavity (밀폐공간 소음제어를 위한 뉴로-퍼지 제어기 구현)

  • 박희경;공성곤
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.282-288
    • /
    • 1998
  • 본 논문에서는 뉴로-퍼지 제어기를 이용하여 밀폐공간에서의 능동 소음 제어기를 구현하였다. 능동 소음 제어기는 잡음에 의하여 왜곡된 신호로부터 잡음을 제거하여 원 신호를 복원하는 제어시스템이다. 일반적으로 잡음의 특성이 시간에 따라 변화라고, 전달특성이 비선형적이므로 고정된 제어기에 의해서는 제어할 수 없다. 이 논문에서는 뉴로-퍼지 제어기를 사용하여 파라미터를 오차 역전파 학습을 통하여 변화시킴으로써 잡응의 특성에 효과적을 적응하는 능동 소음 제어기를 구성하였다. 원신호는 음성신호를 사용하였으며 실제 소음과 소음 전달경로인 1차경로를 통과한 왜곡된 소음은 실험에 의해 얻은 데이터를 사용하였다. 제어신호의 전달경로인 2차경로는 100[kHz]에서 1[kHz]까지의 주파수 특성을 고려하여 curve fitting 방법을 사용하여 4차로 모델링한 결과를 사용하였다. 제안한 능동 소음 제어기의 성능을 시뮬레이션을 통하여 확인하였다.

  • PDF

A Neuro Fuzzy Controller Using Auto-tuning Width of Membership Function for Equipment Systems (설비시스템을 위한 소속함수 폭의 자동동조를 사용한 뉴로퍼지 제어기)

  • 이수흠;방근태
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.2
    • /
    • pp.102-109
    • /
    • 1997
  • The width of fuzzy membership function and control rule has an effect on performance of the fuzzy controller for electric equipment systems. In this paper, the neuro-fuzzy controller is proposed to im¬prove the performance of fuzzy controller. It has the width of membership function, that is adapted to the electrical parameter using multi-layer neural network, it is applied to first order electric power system with dead time and various plant constant. The related simulation resolts show that the pro¬posed neuro fuzzy controller are superior characteristics of improved performance

  • PDF

EM Algorithm based Neuro-Fuzzy Modeling (EM알고리즘을 기반으로 한 뉴로-퍼지 모델링)

  • Kim, Seoung-Suk;Jun, Beung-Suk;Kim, Ju-Sik;Ryu, Jeoung-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2846-2849
    • /
    • 2002
  • 본 논문은 뉴로-퍼지 시스템에서의 규칙 선택 및 모델 학술에 대하여 EM 알고리즘을 기반으로 하는 구조 동정을 제안한다. 뉴로-퍼지 모델링에서의 초기 파라미터가 학습과정에서의 모델 성능에 큰 영향을 주고 있다. 주어진 데이터에 근거한 파라미터 추정에는 다양한 방법들이 소개되고 응용되어져 왔는데 이전 연구들에서 볼 수 있는 HCM, FCM 등은 데이터와의 유클리디언 거리를 최소화하는 중심점을 파라미터로 선택하는 등의 방법과 퍼지 균등화 등은 데이터의 확률 밀도함수를 이용하여 파라미터를 추정하였다. 제안된 방법에서는 데이터에서의 Maximum Likelihood Estimator를 기반으로 하는 방법으로 EM 알고리즘을 이용하였다. 초기 파라미터의 결정에서 EM 알고리즘을 이용하여 뉴로-퍼지 모델의 전제부 소속함수 파라미터 추정을 실시한다. EM 알고리즘을 이용한 퍼지 모델의 특징으로는 전제부가 클러스터링에 의하여 생성되므로 입력의 차원이나 소속함수의 수가 증가하여도 규칙의 수는 증가하지 않는다. 이를 자동차 MPG 예제를 통하여 제안된 방법의 유용성을 보이고자 한다.

  • PDF

Neuro-Fuzzy Model based Electrical Load Forecasting System: Hourly, Daily, and Weekly Forecasting (뉴로-퍼지 모델 기반 전력 수요 예측 시스템: 시간, 일간, 주간 단위 예측)

  • Park, Yong-Jin;Wang, Bo-Hyeun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.5
    • /
    • pp.533-538
    • /
    • 2004
  • This paper proposes a systematic method to develop short-term electrical load forecasting systems using neuro-fuzzy models. The proposed system predicts the electrical loads with the lead times of 1 hour, 24 hour, and 168 hour. To do so, the load forecasting system first builds an initial structure off-line for each hour of four day types and then stores the resultant initial structures in the initial structure bank. 96 initial structures are constructed for each prediction lead time. Whenever a prediction needs to be made, the proposed system initializes the neuro-fuzzy model with the appropriate initial structure stored and trains the initialized prediction modell. To improve the performance of the prediction system in terms of accuracy and reliability at the same time, the prediction model employs only two inputs. It makes possible to interpret the fuzzy rules to be learned. In order to demonstrate the viability of the proposed method, we develop a load forecasting system by using the real load data collected during 1996 and 1997 at KEPCO. Simulation results reveal that the prediction system developed in this paper can achieve a remarkable improvement on both accuracy and reliability