• 제목/요약/키워드: 뉴런 수

검색결과 241건 처리시간 0.026초

유전자 알고리즘과 SOM 알고리즘을 이용한 효율적 경로 탐색 (Efficient Path Search Method using Genetic Algorithm and SOM Algorithm)

  • 정지인;엄도성;김광백
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2011년도 춘계학술대회
    • /
    • pp.87-90
    • /
    • 2011
  • 본 논문에서는 유전자 알고리즘에 SOM 알고리즘을 적용하여 효율적으로 경로를 탐색할 수 있는 방법을 제안한다. 제안된 경로 탐색 방법은 효율적인 경로 탐색에 앞서 유전자 알고리즘에 의해 도출된 각각의 결과 좌표를 뉴런으로 설정하고 각 뉴런들의 모든 거리 값을 SOM 알고리즘에 적용하여 거리에 대한 가중치를 구한다. 뉴런 선택 조건(가장 적은 거리 가중치, 이전에 선택되지 않았던 뉴런)을 만족하는 뉴런 및 해당 뉴런의 이웃 반경 내에 존재하는 뉴런들의 연결 강도를 가우시안 분포(오차율 분포)에 적용하여 변경하고, 가장 강한 연결 강도를 가지는 승자 뉴런에 해당하는 경로를 선택한다. 이러한 과정을 뉴런의 개수만큼 반복하여 모든 뉴런들의 경로를 도출한다. 제안된 방법을 실험한 결과, 기존의 유전자 알고리즘을 이용한 방법보다 제안된 방법이 효율적인 경로를 탐색하는 것을 확인할 수 있었다.

  • PDF

분산추정에 의한 LVQ 신경회로망의 최적 출력뉴런 분할에 관한 연구 (A Study on Optimal Output Neuron Allocation of LVQ Neural Network using Variance Estimation)

  • 정준원;조성원
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1996년도 추계학술대회 학술발표 논문집
    • /
    • pp.239-242
    • /
    • 1996
  • 본 논문에서는 BP(Back Propagation)에 비해서 빠른 학습시간과 다른 경쟁학습 신경회로망 알고리즘에 비해서 비교적 우수한 성능으로 패턴인식 등에 많이 이용되고 있는 LVQ(Learning Vector Quantization) 알고리즘의 성능을 향상시키기 위한 방법을 논의하고자 한다. 일반적으로 LVQ는 음(negative)의 학습을 하기 때문에 초기 가중치가 제대로 설정되지 않으면 발산할 수 있다는 단점이 있으며, 경쟁학습 계열의 신경망이기 때문에 출력 층의 뉴런 수에 따라 성능에 큰 영향을 받는다고 알려져 있다.[1]. 지도학습 형태를 지닌 LVQ의 경우에 학습패턴이 n개의 클래스를 가지고, 각 클래스 별로 학습패턴의 수가 같은 경우에 일반적으로 전체 출력뉴런에 대해서 (출력뉴런수/n)개의 뉴런을 각 클래스의 목표(desired) 클러스터로 할당하여 학습을 수행하는데, 본 논문에서는 각 클래스에 동일한 수의 출력뉴런을 할당하지 않고, 학습데이터에서 각 클래스의 분산을 추정하여 각 클래스의 분산을 추정분산에 비례하게 목표 출력뉴런을 할당하고, 초기 가중치도 추정분산에 비례하게 각 클래스의 초기 임의 위치 입력백터를 사용하여 학습을 수행하는 방법을 제안한다. 본 논문에서 제안하는 방법은 분류하고자 하는 데이터에 대해서 필요한 최적의 출력뉴런 수를 찾는 것이 아니라 이미 결정되어 있는 출력뉴런 수에 대해서 각 클래스에 할당할 출력 뉴런 수를 데이터의 추정분산에 의해서 결정하는 것으로, 추정분산이 크면 상대적으로 많은 출력 뉴런을 할당하고 작으면 상대적으로 적은 출력뉴런을 할당하고 초기 가중치도 마찬가지 방법으로 결정하며, 이렇게 하면 정해진 출력뉴런 개수 안에서 각 클래스 별로 분류의 어려움에 따라서 출력뉴런을 할당하기 때문에 미학습 뉴런이 줄어들게 되어 성능의 향상을 기대할 수 있으며, 실험적으로 제안된 방법이 더 나은 성능을 보임을 확인했다.initially they expected a more practical program about planting than programs that teach community design. Many people are active in their own towns to create better environments and communities. The network system "Alpha Green-Net" is functional to support graduates of the course. In the future these educational programs for citizens will becomes very important. Other cities are starting to have their own progrms, but they are still very short term. "Alpha Green-Net" is in the process of growing. Many members are very keen to develop their own abilities. In the future these NPOs should become independent. To help these NPOs become independent and active the educational programs should consider and teach about how to do this more in the future.단하였는데 그 결과, 좌측 촉각엽에서 제4형의 신경연접이 퇴행성 변화를 나타내었다. 그러므로 촉각의 지각신경세포는 뇌의 같은 족 촉각엽에 뻗어와 제4형 신경연접을 형성한다고 결론되었다.$/ 값이 210 $\mu\textrm{g}$/$m\ell$로서 효과적인 저해 활성을 나타내었다 따라서, 본 연구에서 빈

  • PDF

고차 뉴런을 이용한 KOHONEN의 자기 조직화 맵 (Supervised Kohonen Feature Map Using Higher Order Neuron)

  • 정종수;하기와라 마사후미
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2656-2659
    • /
    • 2001
  • 본 논문은 교사 있는 학습기의 Kohonen Feature Map에 고차 뉴런을 도입, 고차 뉴런을 이용한 Kohonen의 자기 조직화 맵을 제안한다. 일반적인 Kohonen Feature Map의 특징은 입력신호를 받아 출력 면(Kohonen Feature Map) 내의 특정한 위치 주위에 집중하는 메커니즘으로 즉, 국소집중 반응을 구하는 구조이다. 본 논문에서는 종래형의 Kohonen Feature Map의 특징을 보유하며 교사 있는 학습기의 Kohonen Feature Map에 고차 뉴런을 도입하여 국소집중반응 및 특징 축출이 용이하도록 네트워크 구조를 개선한 것이다. 특히, 일차 뉴런의 문제점인 비선형 분리 문제에 대하여 교사 있는 학습기의 Kohonen Feature Map의 입력층에 고차 뉴런을 도입함으로 비선형 분리 가능한 형태의 네트워크 구조로 형성하였다. 그러나, 일반적인 고차 뉴런의 문제점을 보안하기 위해 본 논문에서는 오직 2차 뉴런만을 생성하였으며 중복되는 뉴런을 최대한 억제하였다. 본 제안 모델의 특성을 살펴보기 위해 XOR문제와 20개의 Alphabet을 식별하는 패턴인식 시뮬레이션을 했으며, 본 제안 모델의 범화능력을 알아보기 위하여 Mirror Symmetry를 사용하여 계산기 시뮬레이션을 했다. 그 결과, 본 제안 모델이 종래형의 네트워크 구조보다 뛰어난 인식률을 얻을 수 있었다.

  • PDF

고차 뉴런을 이용한 KOHONEN 자기 조직화 맵의 연결강도 특성 (Control Weights On Supervised Kohonen Feature Map For Using Higher Order Neuron)

  • 정종수;김성일;전병훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2516-2518
    • /
    • 2003
  • 본 논문은 고차 뉴런의 문제점으로 지적되고 있는 뉴런이 방대하게 증가하는 문제를 해결하고자, 최적의 뉴런을 생성하고 생성되어진 고차 뉴런 중 일정 비율로 뉴런의 연결강도를 도태시켜 감에 따라 네트워크상에 나타나는 특성을 비교하였다. 본 논문은 고차 뉴런을 이용한 Kohonen의 자기 조직화 맵의 고차 뉴런부에 일정 비율로 연결강도를 도태한 후 인식률을 얻는 형태로 시뮬레이션을 하였다. 특히, 종래 형태의 고차 뉴런을 이용한 Kohonen 자기 조직화 맵의 알고리즘을 변형없이 사용하였으며 중복되는 뉴런을 최대한 억제하기 위해 2차 뉴런만을 생성한 네트워크 구조 위에 입력 데이터의 특징을 유지하고 고차 뉴런의 특징을 더욱 활성화하기 위해 일정한 양의 연결강도를 도태시킴으로써 출력면에서 국소집중 반응에 의한 정확한 인식률 향상 등을 조사하는 시뮬레이션을 하였다. 본 제안 모델의 특성을 살펴보기 위해 60개의 데이터로 이루어진 금속 소나 음데이터와 암석 소나 음 데이터를 이용하여 금속인지 암석인지를 판별하는 시뮬레이션을 하였다.

  • PDF

영상 인식을 위한 생리학적 퍼지 신경망 (Physiological Fuzzy Neural Networks for Image Recognition)

  • 김광백;문용은;박충식
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2005년도 춘계학술대회
    • /
    • pp.169-185
    • /
    • 2005
  • 신경계의 뉴런 구조는 흥분 뉴런과 억제 뉴런으로 구성되며 각각의 흥분 뉴런과 억제 뉴런은 주동근 뉴런(agonistic neuron)에 의해 활성화되며 길항근 뉴런(antagonist neuron)에 의해 비활성화 된다. 본 논문에서는 인간 신경계의 생리학적 뉴런 구조를 분석하여 퍼지 논리를 이용한 생리학적 퍼지 신경망을 제안한다. 제안된 구조는 주동근 뉴런에 의해 흥분 뉴런이 될 수 있는 뉴런들을 선택하여 흥분시켜 출력층으로 전달하고 나머지 뉴런들을 억제시켜 출력층에 전달시키지 않는다. 신경계를 기반으로 한 제안된 생리학적 퍼지 신경망의 학습구조는 입력층, 학습 데이터의 특징을 분류하는 중간층, 그리고 출력층으로 구성된다. 제안된 퍼지 신경망의 학습 및 인식 성능을 평가하기 위해 정확성이 요구되는 의학의 한 분야인 기관지 편평암 영상인식과 영상 인식의 주요 응용 분야인 차량 번호판 인식에 적용하여 기존의 신경망과 성능을 비교 분석하였다. 실험 결과에서는 제안된 생리학적 퍼지 신경망이 기존의 신경망보다 학습 시간과 수렴성이 개선되었을 뿐만 아니라, 인식에 있어서도 우수한 성능이 있음을 확인하였다.

  • PDF

시냅스 웨이트 변화에 따른 계층구조 뉴런에서의 활성전위 시뮬레이션 (A Simulation of Action Potential on The Hierachical Structured Neuron with Synapse Weight Transition)

  • 김석환;류광렬;허창우;이규정
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2000년도 추계종합학술대회
    • /
    • pp.509-513
    • /
    • 2000
  • 아홉 개의 계층구조 형태의 뉴런을 LINUX를 기초로 한 GENESIS를 이용하여 입력전류에 대한 각 뉴런의 신경전달 메카니즘을 분석하였고 마지막 뉴런에 미치는 활성전위 영향을 시뮬레이션을 해보았다. 본 연구에서는 다른 뉴런과 연결해주며 신호를 전달해주는 시냅스의 웨이트를 중간계층 뉴런에서 적게 연결하여 비정상 상태의 뉴런을 만들어 보았다. 시뮬레이션 결과 신경세포를 전기회로 적인 모델을 기준으로 설계한 뉴런은 미세한 자극의 변화해 매우 민감하게 반응 하였고, 마지막 뉴런 에서는 활성전위 간격이 정상상태의 다른 세포와 비교해 보았으며, 결과적으로 뉴런의 시냅스 웨이트가 적으면 신경전달에 이상이 발생하여 세포가 손상됨을 알 수 있었다.

  • PDF

시냅스 웨이트 변화에 따른 계층구조 뉴런에서의 활성전위 시뮬레이션 (A Simulation of Action Potential on the Hierachical Structured Neuron with Synapse Weight Transition)

  • 김석환;류광렬;허창우;이규정
    • 한국정보통신학회논문지
    • /
    • 제4권4호
    • /
    • pp.869-874
    • /
    • 2000
  • 아홉 개의 계층구조 형태의 뉴런을 LINUX를 기초로 한 GENESIS를 이용하여 입력전류에 대한 각 뉴런의 신경전달 메카니즘을 분석하였고 마지막 뉴런에 미치는 활성전위 영향을 시뮬레이션을 해 보았다. 본 연 구에서는 다른 뉴런과 연결해주며 신호를 전달해주는 시냅스의 웨이트를 중간계층 뉴런에서 적게 연결하여 비정상 상태의 뉴런을 만들어 보았다. 시뮬레이션 결과 신경세포를 전기회로 적인 모델을 기준으로 설계한 뉴런은 미세한 자극의 변화해 매우 민감하게 반응 하였고, 마지막 뉴런 에서는 활성전위 간격이 정상상태의 다른 세포와 비교해 보았으며, 결과적으로 뉴런의 시냅스 웨이트가 적으면 신경전달에 이상 이 발생하여 세 포가 손상됨을 알 수 있었다.

  • PDF

다중 시냅스가 뉴런의 반응에 미치는 영향에 대한 컴퓨터 시뮬레이션 연구 (A Computational Study on the Effect of Multisynaptic Connections on Single Neurons' Response)

  • 구본웅;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2008년도 한국컴퓨터종합학술대회논문집 Vol.35 No.1 (C)
    • /
    • pp.222-225
    • /
    • 2008
  • 신경계에서 뉴런은 다른 한 뉴런에 두 개 이상의 시냅스를 통해 연결되곤 한다. 이런 다중 시냅스 연결은 시냅스 가중치를 높이는 것과 마찬가지라고 보는 것이 일반적이다. 본 논문에서는 다른 가능성을 제시한다. 두 뉴런 사이의 다중 시냅스 연결이 시냅스전 (presynaptic) 뉴런으로부터 스파이크 (spike) 입력을 받는 한 시냅스후 (postsynaptic) 뉴런의 반응에 어떤 영향을 주는지 살펴보았다. 다중 시냅스 연결이 있는 경우, 단일 시냅스 연결만 있는 경우와는 다른 입력 패턴에 대해서 시냅스 후 뉴런이 반응했다. 다중 시냅스를 포함하는 경우끼리도 뉴런 상의 연결 위치가 달라지면 또 다른 입력 패턴에 대해서만 반응했다. 이 결과들은 다중 시냅스 연결이 가중치 증가와 다른 역할을 하고, 다중 시냅스 연결을 이루는 각 시냅스의 위치에 따라 신경망의 정보 처리 특성이 달라질 수도 있음을 암시한다.

  • PDF

다채널 실시간 신경신호 기록 및 신경계 분석을 위한 시스템의 개발 (Development of Multichannel Real Time Data Acquisition and Signal Processing System for Nervous System Analysis)

  • 김상돌;김경환;김성준
    • 대한의용생체공학회:의공학회지
    • /
    • 제21권5호
    • /
    • pp.469-475
    • /
    • 2000
  • 신경신호의 계측은 신경계의 연구에 필수적인 도구로 최근 반도체미세전극기술 등 수십, 수백개의 채널로부터 신경신호를 기록할 수 있는 방법들이 발달함에 따라 많은 수의 뉴런으로부터 신경 신호를 측정하여 컴퓨터로 그 신호를 처리할 수 있는 시스템의 필요성은 더욱 커지고 있다. 본 연구에서는 최대 16채널의 신경신호를 실시간에 측정하여 기록하고, 저장된 신호로부터 활동전위를 검출하며, 단일 뉴런들로부터의 신호를 분류하여 spike train의 형태로 저장한 뒤 여러 뉴런들간의 상관관계를 분석하기 위한 spike train 해석이 가능한 시스템을 개발하였다. 이 시스템은 보통사양의 PC이외에는 단지 신호획득보드만을 포함하여 다채널미세전극으로부터 뉴런의 신호를 측정, 증폭하여 호스트PC로 전송하고 저장하며 이로부터 활동전위를 검출하여 단일뉴런으로부터의 spike train으로 분류할 수 있다. 또한 저장된 spike train들로부터 신경회로망을 이루는 여러뉴런 들간의 관계를 분석하여 기능들이 시스템에 포함되어있다. 개발된 시스템을 사용하여 개구리 감각 신경의 신호를 실시간에 동시기록하여 활동전위을 검출하고 특징추출방법과 principal component analysis를 이용하여 분류한 뒤 spike train 해석을 수행하였다.

  • PDF

디지털 뉴런프로세서의 설계에 관한 연구 (Design of the Digital Neuron Processor)

  • 홍봉화;이호선;박화세
    • 전자공학회논문지 IE
    • /
    • 제44권3호
    • /
    • pp.12-22
    • /
    • 2007
  • 본 논문에서는 잉여수체계(Residue Number System)를 이용하여 고속의 디지털 신경회로망을 제안하고 이를 구현하기 위한 중요연산부인 고속의 디지털 뉴런프로세서를 설계하였다. 설계된 디지털 뉴런프로세서는 잉여수계를 이용한 MAC 연산기와 혼합계수 변환을 이용한 시그모이드 함수 연산 부로 구성되며, 설계된 회로는 VHDL로 기술하였고 Compass 툴로 합성하였다. 실험결과, 본 논문에서 설계한 디지털 뉴런프로세서는 19.2nsec의 속도를 보였으며, 실수연산기로 설계한 뉴런프로세서에 비하여 약 50%정도 하드웨어 크기를 줄일 수 있었다. 본 논문에서 설계한 뉴런프로세서는 실시간 처리를 요하는 병렬분산처리 시스템에 적용될 수 있을 것으로 기대된다.