• Title/Summary/Keyword: 뉴런 구조 분리

Search Result 9, Processing Time 0.03 seconds

Supervised Kohonen Feature Map Using Higher Order Neuron (고차 뉴런을 이용한 KOHONEN의 자기 조직화 맵)

  • Jung, Jong-Soo;Hagiwara, Massfume
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2656-2659
    • /
    • 2001
  • 본 논문은 교사 있는 학습기의 Kohonen Feature Map에 고차 뉴런을 도입, 고차 뉴런을 이용한 Kohonen의 자기 조직화 맵을 제안한다. 일반적인 Kohonen Feature Map의 특징은 입력신호를 받아 출력 면(Kohonen Feature Map) 내의 특정한 위치 주위에 집중하는 메커니즘으로 즉, 국소집중 반응을 구하는 구조이다. 본 논문에서는 종래형의 Kohonen Feature Map의 특징을 보유하며 교사 있는 학습기의 Kohonen Feature Map에 고차 뉴런을 도입하여 국소집중반응 및 특징 축출이 용이하도록 네트워크 구조를 개선한 것이다. 특히, 일차 뉴런의 문제점인 비선형 분리 문제에 대하여 교사 있는 학습기의 Kohonen Feature Map의 입력층에 고차 뉴런을 도입함으로 비선형 분리 가능한 형태의 네트워크 구조로 형성하였다. 그러나, 일반적인 고차 뉴런의 문제점을 보안하기 위해 본 논문에서는 오직 2차 뉴런만을 생성하였으며 중복되는 뉴런을 최대한 억제하였다. 본 제안 모델의 특성을 살펴보기 위해 XOR문제와 20개의 Alphabet을 식별하는 패턴인식 시뮬레이션을 했으며, 본 제안 모델의 범화능력을 알아보기 위하여 Mirror Symmetry를 사용하여 계산기 시뮬레이션을 했다. 그 결과, 본 제안 모델이 종래형의 네트워크 구조보다 뛰어난 인식률을 얻을 수 있었다.

  • PDF

Neuron Tracing- and Deep Learning-guided Interactive Proofreading for Neuron Structure Segmentation (뉴런 추적 및 딥러닝 기반의 대화형 뉴런 구조 교정 기법)

  • Choi, JunYoung;Jeong, Won-Ki
    • Journal of the Korea Computer Graphics Society
    • /
    • v.27 no.4
    • /
    • pp.1-9
    • /
    • 2021
  • Segmenting the compartments of neurons, such as axons, dendrites, and cell bodies, is helpful in the analysis of neurological phenomena. Recently, there have been several studies to segment the compartments through deep learning. However, this approach has the potential to include errors in the results due to noise in data and differences between training data and actual data. Therefore, in order to use these for actual analysis, it is essential to proofread the results. The proofreading process requires a lot of effort and time because an expert must perform it manually. We propose an interactive neuron structure proofreading method that can more easily correct errors in the segmentation results of a deep learning. This method proofread the neuron structure based on the characteristics of the neuron with structural consistency, so that a high-accuracy proofreading result can be obtained with less interaction.

An Error position detection and recovery algorithm at 3×3 matrix digital circuit by mimicking a Neuron (뉴런의 기능을 모사한 3×3배열구조의 디지털 회로에서의 오류위치 확인 및 복구 알고리즘)

  • Kim, Seok-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.11
    • /
    • pp.2193-2198
    • /
    • 2016
  • In this study, we propose an algorithm to simulate the function of the coupling structure and having two neurons to find out exactly recover the temporary or permanent position errors that can occur during operation in a digital circuit was separated by function, a $3{\times}3$ array. If any particular part in the combined cells are differentiated cells have a problem that function to other cells caused an error and perform the same function are subjected to a step of apoptosis by the surrounding cells. Designed as a function block in the function and the internal structure having a cell structure of this digital circuit proposes an algorithm. In case of error of module 4 of block 1 considered in this study, sum of all module numbers for horizontal direction, total module number sum for vertical direction, and sum of all module numbers for diagonal direction, We were able to find the location.

An Error position detection and recovery algorithm at 3×3 matrix digital circuit by mimicking a Neuron (뉴런의 기능을 모사한 3×3배열구조의 디지털 회로에서의 오류위치 확인 및 복구 알고리즘)

  • Kim, Soke-Hwan;Hurg, Chang-Wu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.101-104
    • /
    • 2016
  • In this study, we propose an algorithm to simulate the function of the coupling structure and having two neurons to find out exactly recover the temporary or permanent position errors that can occur during operation in a digital circuit was separated by function, a 3x3 array. If any particular part in the combined cells are differentiated cells have a problem that function to other cells caused an error and perform the same function are subjected to a step of apoptosis by the surrounding cells. Designed as a function block in the function and the internal structure having a cell structure of this digital circuit proposes an algorithm.

  • PDF

A Neural Metwork's FPGA Realization using Gate Level Structure (게이트레벨 연산구조를 사용한 신경합의 FPGA구현)

  • Lee, Yun-Koo;Jeong, Hong
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.3
    • /
    • pp.257-269
    • /
    • 2001
  • Because of increasing number of integrated circuit, there is many tries of making chip of neural network and some chip is exit. but this is not prefer because YLSI technology can't support so large hardware. So imitation of whole system of neural network is more prefer. There is common procedure in signal processing as in the neural network and pattern recognition. That is multiplication of large amount of signal and reading LUT. This is identical with some operation of MLP, and need iterative and large amount of calculation, so if we make this part with hardware, overall system's velocity will be improved. So in this paper, we design neutral network, not neuron which can be used to many other fields. We realize this part by following separated bits addition method, and it can be appled in the real time parallel process processing.

  • PDF

Independent Component Analysis of EEG and Source Position Estimation (EEG신호의 독립성분 분석과 소스 위치추정)

  • Kim, Eung-Soo
    • The KIPS Transactions:PartB
    • /
    • v.9B no.1
    • /
    • pp.35-46
    • /
    • 2002
  • The EEG is a time series of electrical potentials representing the sum of a very large number of neuronal dendrite potentials in the brain. The collective dynamic behavior of neural mass of different brain structures can be assessed from EEG with depth electrodes measurements at regular time intervals. In recent years, the theory of nonlinear dynamics has developed methods for quantitative analysis of brain function. In this paper, we considered it is reasonable or not for ICA apply to EEG analysis. Then we applied ICA to EEG for big toe movement and separated the independent components for 15 samples. The strength of each independent component can be represented on the topological map. We represented ICA can be applied for time and spatial analysis of EEG.

Dynamic Extension of Genetic Tree Maps (유전 목 지도의 동적 확장)

  • Ha, seong-Wook;Kwon, Kee-Hang;Kang, Dae-Seong
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.6
    • /
    • pp.386-395
    • /
    • 2002
  • In this paper, we suggest dynamic genetic tree-maps(DGTM) using optimal features on recognizing data. The DGTM uses the genetic algorithm about the importance of features rarely considerable on conventional neural networks and introduces GTM(genetic tree-maps) using tree structure according of the priority of features. Hence, we propose the extended formula, DGTM(dynamic GTM) has dynamic functions to separate and merge the neuron of neural network along the similarity of features.

An Adaptive Tree Map Scheme using Genetic Algorithm (유전 알고리즘을 이용한 적응적 트리맵 설계)

  • 홍종선;김대일;장혜경;김영호;강대성
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2003.06a
    • /
    • pp.98-101
    • /
    • 2003
  • 본 논문에서는, 패턴 인식시 데이타의 최적의 특성을 구성할 수 있는 새로운 신경망 구조인 적응적 트리맵을 제안한다. 유전 알고리즘을 사용한 적응적 트리맵(adaptive tree map ATM)은 데이터의 특징에 대한 중요도를 유전 알고리즘으로 구성하고, 특징의 우선 순위에 따라 트리구조를 도입하고 데이터의 유사성에 따라 신경망의 뉴런이 분리, 병합 될 수 있다. 패턴인식의 인식률에 영향을 미치는 인자 중에서 가장 중요한 특징은 연구자의 선택에 의하여 사용되거나 무시될 수 있으며, 반복적인 실험을 통하여 적절한 특징을 사용할 수 있으나 최적의 특징은 될 수 없다. 그러나 본 논문에서 제안한 ATM을 이용하면 블랙박스로 구성된 적응적인 시스템을 이용하여 원하는 출력을 얻을 수 있게 된다.

  • PDF

A Study on the Spoken Korean Citynames Using Multi-Layered Perceptron of Back-Propagation Algorithm (오차 역전파 알고리즘을 갖는 MLP를 이용한 한국 지명 인식에 대한 연구)

  • Song, Do-Sun;Lee, Jae-Gheon;Kim, Seok-Dong;Lee, Haing-Sei
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.6
    • /
    • pp.5-14
    • /
    • 1994
  • This paper is about an experiment of speaker-independent automatic Korean spoken words recognition using Multi-Layered Perceptron and Error Back-propagation algorithm. The object words are 50 citynames of D.D.D local numbers. 43 of those are 2 syllables and the rest 7 are 3 syllables. The words were not segmented into syllables or phonemes, and some feature components extracted from the words in equal gap were applied to the neural network. That led independent result on the speech duration, and the PARCOR coefficients calculated from the frames using linear predictive analysis were employed as feature components. This paper tried to find out the optimum conditions through 4 differerent experiments which are comparison between total and pre-classified training, dependency of recognition rate on the number of frames and PAROCR order, recognition change due to the number of neurons in the hidden layer, and the comparison of the output pattern composition method of output neurons. As a result, the recognition rate of $89.6\%$ is obtaimed through the research.

  • PDF